Đáp án C
Đ I : M(x;y) M’( – 4– x; 2– y)
=> 2 ( − 4 − x ) + 2 ( 2 − y ) − 7 = 0
⇒ ( d ' ) : 2 x + 2 y + 11 = 0
Đáp án C
Đ I : M(x;y) M’( – 4– x; 2– y)
=> 2 ( − 4 − x ) + 2 ( 2 − y ) − 7 = 0
⇒ ( d ' ) : 2 x + 2 y + 11 = 0
Trong mặt phẳng tọa độ Oxy, cho điểm M(3; -5), đường thẳng d có phương trình 3x + 2y – 6 = 0 và đường tròn (C) có phương trình x 2 + y 2 − 2 x + 4 y – 4 = 0 . Tìm ảnh của M, d, và (C) qua phép đối xứng qua trục Ox
Trong mặt phẳng Oxy cho đường thẳng d: 2x – y + 6 = 0. Viết phương trình đường thẳng d’ là ảnh của d qua phép đối xứng tâm I(−2;1).
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x - 2y - 1 = 0. ảnh của đường thẳng d qua phép đối xứng tâm O có phương trình là:
A. 3x + 2y + 1 = 0
B. -3x + 2y -1 = 0
C. 3x + 2y - 1 = 0
D. 3x - 2y - 1 = 0
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x − 2y – 6 = 0
a) Viết phương trình của đường thẳng d 1 là ảnh của d qua phép đối xứng qua trục Oy
b) Viết phương trình của đường thẳng d 2 là ảnh của d qua phép đối xứng qua đường thẳng Δ có phương trình x + y – 2 = 0 .
Trong mặt phẳng Oxy cho đường thẳng d có phương trình x - 2y + 2 = 0; đường thẳng d’ có phương trình x - 2y - 8 = 0. Tìm tọa độ điểm I sao cho phép đối xứng tâm I biến d thành d’ đồng thời biến trục Oy thành chính nó.
A. I(-2;0)
B. I(8;0)
C. I(-3/2;0)
D. I(0; -3/2)
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình: x − 2y + 2 = 0 và d đường thẳng có phương trình: x − 2y – 8 = 0. Tìm phép đối xứng tâm biến d thành d’ và biến trục Ox thành chính nó.
Trong mặt phẳng tọa độ Oxy cho điểm A(-1;3) và đường thẳng d có phương trình x – 2 y + 3 = 0 . Tìm ảnh của A và d qua phép đối xứng tâm O.
Trong mặt phẳng với hệ trục tọa độ
Oxy Cho hai đường thẳng ∆ 1 và ∆ 2
lần lượt có phương trình: x-2x+1=0
và x-2y+4=0,điểm I(2;1) Phép vị tự
tâm I tỉ số k biến đường thẳng ∆ 1
thành ∆ 2 . Tìm k ?
A. 1
B. 2
C. 3
D. 4
Trong mặt phẳng Oxy, cho đường thẳng d:x-2y+2=0; d':x-2y-8=0 Phép đối xứng tâm biến d thành d' và biến trục Ox thành chính nó có tâm I là:
A. (0;-3)
B. (0;3)
C. (-3;0)
D. (3,0)