Cho bốn điểm A, B, C và D không đồng phẳng. Gọi M và N lần lượt là trung điểm của các đoạn thẳng AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD.
a) Tìm giao điểm của đường thẳng CD và mặt phẳng (MNP).
b) Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD).
Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I, K lần lượt là trung điểm của AD và BC.
a) Tìm giao tuyến của hai mặt phẳng (IBC) và (KAD).
b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN).
Trong không gian cho mặt phẳng (P) và ba điểm A, B, C không nằm trong (P). Gọi M, N, K lần lượt là giao điểm của các đường thẳng AB, AC, BC với mặt phẳng (P)( A, B, C không thẳng hàng). Khẳng định nào sau đây là đúng.
A. Ba điểm M, N, K thẳng hàng.
B. Ba điểm M, N, K trùng nhau
C. Ba điểm M, N, K lập thành tam giác cân.
D. M, N, K bất kì
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD).
b) Tìm giao điểm của hai mặt phẳng (PMN) và BC.
Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song với nhau. S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm của đoạn SC.
a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB).
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM và BN đồng quy.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Trên cạnh CD lấy
điểm P sao cho PD=2PC .
a) Tìm giao điểm của đường thẳng BD và mặt phẳng (MNP).
b) Tìm giao tuyến của mặt phẳng (MNP) và (ABD).
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN.
a) Tìm giao điểm A’ của đường thẳng AG và mp(BCD).
b) Qua M kẻ đường thẳng Mx song song với AA’ và Mx cắt (BCD) tại M’.
c) Chứng minh GA = 3GA’
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC, P là điểm thuộc DB sao cho PB = 2PD. Gọi Q là giao điểm của CD với mặt phẳng (MNP). Đường thẳng MP không chéo với đường thẳng nào sau đây?
A. AB
B. CD
C. NP
D. BC
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .