Tìm hình vuông có kích thước nhỏ nhất để trong hình vuông đó có thể sắp xếp được 5 hình tròn có bán kính bằng 1 sao cho không có 2 đường tròn bất kì nào trong chúng có điểm trong chung
Tìm hình vuông có kích thước nhỏ nhất để trong hình vuông đó có thể sắp xếp được 5 hình tròn có bán kính bằng 1, sao cho không có hai hình tròn bất kì nào trong chúng có điểm trong chung.
Cho 2001 điểm bất kì trên mặt phẳng, biết rằng cứ 3 điểm bất kì trong số 2001 điểm nói trên bao giờ cũng có 2 điểm mà khoảng cách giữa chúng nhỏ hơ 1 đơn vị dài.
CMR: có ít nhất 1001 điểm trong số 2001 điểm nói trên nằm trong 1 đường tròn bán kính bằng 1.
trong mặt phẳng cho 2n+1 điểm phân biệt ko có 3 điểm nảo thẳng hàng. biết rằng bất kỳ 3 điểm trong các điểm đã cho luôn có 2 điểm có khoảng cách <1.CMR tồn tại 1 hình tròn bán kính 1cm chứa n+1 điểm trong 2n+1 điểm đã cho
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,
2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm
3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương
4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,
2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm
3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương
4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá√33 cm2 và có một góc nhỏ hơn 45o
Trên mặt phẳng cho 25 điểm. Biết rằng trong ba điểm bất kì trong số đó luôn luôn tồn tại hai điểm cách nhau nhỏ hơn 1. Chứng minh rằng tồn tại hình tròn bán kính 1 chứa không ít hơn 13 điểm đã cho.
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
Cho 2001 điểm trên một mặt phẳng sao cho cứ một bộ ba điểm bất kì luôn có hai điểm có khoảng cách bé hơn 1.
Chứng minh rằng có ít nhất 1001 điểm nằm trong một đường tròn có bán kính bằng 1.