Đáp án A
Phương pháp:
Mặt cầu có đường kính AB nhận trung điểm của AB làm tâm và có bán kính R = A B 2
Cách giải: Gọi I là trung điểm của AB ta có I(1;1;1)
Vậy mặt cầu đường kính AB có tâm I(1;1;1) và bán kính R = A B 2 = 2
Đáp án A
Phương pháp:
Mặt cầu có đường kính AB nhận trung điểm của AB làm tâm và có bán kính R = A B 2
Cách giải: Gọi I là trung điểm của AB ta có I(1;1;1)
Vậy mặt cầu đường kính AB có tâm I(1;1;1) và bán kính R = A B 2 = 2
Trong không gian Oxyz viết phương trình mặt cầu có đường kính AB với A(2;1;0), B(0;1;2)
A. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 4
B. ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 2
C. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 4
D. ( x + 1 ) 2 + ( y + 1 ) 2 + ( z + 1 ) 2 = 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng (α): x-y+z-4=0 và mặt cầu (S): (x-3)²+ (y-1)²+ (z-2)²=16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x'Ox là:
A . M - 1 2 ; 0 ; 0
B . M - 1 3 ; 0 ; 0
C . M 1 ; 0 ; 0
D . M 1 3 ; 0 ; 0
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 2 và hai đường thẳng d: x - 2 1 = y 2 = z - 1 - 1 , ∆ : x 1 = y 1 = z - 1 - 1 . Phương trình nào dưới đây là phương trình của một mặt phẳng tiếp xúc với (S), song song với d và ∆ ?
A. x+z+1=0
B. x+y+1=0
C. y+z+3=0
D. x+z-1=0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z - 2 và hai điểm A(2;1;0), B(-2;3;2). Viết phương trình mặt cầu đi qua A,B và có tâm I thuộc đường thẳng d.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0; 1; 2) và B(2;-l;4). Phương trình mặt cầu đường kính AB là
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0; 1; 2) và B(2;-l;4). Phương trình mặt cầu đường kính AB là
Trong không gian Oxyz, cho điểm A ( 0 ; 1 ; 2 ) , mặt phẳng α : x - y + z - 4 = 0 và mặt cầu S : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x'Ox là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x^2+y^2+z^2-6x bán kính R=9 có phương trình là
A. ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 9
B. ( x - 4 ) 2 + ( y + 5 ) 2 + ( z - 6 ) 2 = 81
C. ( x - 4 ) 2 + ( y + 5 ) 2 + ( z - 6 ) 2 = 9
D. ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 81
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-2;3) và đường thẳng d có phương trình x + 1 2 = y - 2 1 = z + 3 - 1 Tính bán kính của mặt cầu (S) có tâm A và tiếp xúc với đường thẳng d