Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) 2x+y-1=0. Mặt phẳng (P) có 1 vecto pháp tuyến là
A. (-2;-2;1)
B. (2;1;-1)
C. (1;2;0)
D. (2;1;0)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+y+2=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (2;0;1)
B. (2;1;0)
C. (2;1;2)
D. (2;-1;0)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+3y-4z+5=0. Vecto nào sau đây là 1 vecto pháp tuyến của mặt phẳng (P)?
A. (-4;3;2)
B. (2;3;-4)
C. (2;3;4)
D. (2;3;5)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+2y-3z+1=0. Vecto nào dưới đây là 1 vecto pháp tuyến mặt phẳng (P)
A. (2;2;1)
B. (2;-3;1)
C. (2;2;-3)
D. (2;-2;-3)
Trong không gian hệ tọa độ Oxyz, cho mặt phẳng α : 2x+y-z+1=0 . Vectơ nào sau đây không là vecto pháp tuyến của mặt phẳng α
A. (4;2;-2)
B. (-2;-1;1)
C. (2;1;1)
D. (2;1;-1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( α ): 2x+3y-4z+5=0. Vecto nào sau đây là một vec tơ pháp tuyến của mặt phẳng
A. (2;3;-4)
B. (2;3;5)
C. (2;3;4)
D. (-4;3;2)
Trong không gian với hệ tọa độ Oxyz, cho M(2;-1;1) và vecto n → = ( 1 ; 3 ; 4 ) Viết phương trình mặt phẳng (P) đi qua điểm M và có vecto pháp tuyến n →
A. 2x - y + z + 3 = 0
B. 2x - y + z - 3 = 0
C. x + 3y + 4z + 3 = 0
D. x + 3y + 4z - 3 = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2z+z+2017=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (1;-1;4)
B. (1;-2;2)
C. (2;2;1)
D. (-2;2;-1)
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 2x-3y-z+5=0. Một vecto pháp tuyến của mặt phẳng (P) là:
A. (2;-3;-1)
B. (2;3;1)
C. (2;-3;1)
D. (2;3;-1)