Đáp án A
Phương pháp giải:
Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng M A 2 + M B 2 đưa về khảo sát hàm số để tìm giá trị nhỏ nhất
Lời giải:


Khi đó T = M A 2 + M B 2
![]()
![]()
Dễ thấy
![]()
![]()
![]()
Dấu bằng xảy ra khi và chỉ khi t =1 => M(2;0;5)
Đáp án A
Phương pháp giải:
Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng M A 2 + M B 2 đưa về khảo sát hàm số để tìm giá trị nhỏ nhất
Lời giải:


Khi đó T = M A 2 + M B 2
![]()
![]()
Dễ thấy
![]()
![]()
![]()
Dấu bằng xảy ra khi và chỉ khi t =1 => M(2;0;5)
Trong không gian với hệ tọa độ Oxy, cho đường thẳng ∆ : x - 1 2 = y 1 = z + 2 - 1 và hai điểm A(0;-1;3), B(1;-2;1). Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho M A 2 + 2 M B 2 đạt giá trị nhỏ nhất.
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 1 2 = z - 3 3 và hai điểm A(2;0;3), B(2;-2;-3). Biết điểm M ( x 0 ; y 0 ; z 0 ) thuộc d thỏa mãn P = M A 4 + M B 4 + M A 2 . M B 2 nhỏ nhất. Tìm y 0
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;-1;-6) và hai đường thẳng
d 1 : x - 1 2 = y - 1 - 1 = z + 1 1 , d 2 : x + 2 3 = y + 1 1 = z - 2 2 Đường thẳng đi qua điểm M và cắt cả hai đường thẳng d₁, d₂ tại hai điểm A, B. Độ dài đoạn thẳng AB bằng:
A. √38
B. 2√10
C. 8
D. 12
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng d: x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của dường thẳng ∆ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3) và đường thẳng d: x = - 1 + t y = 2 + 2 t z = 1 - 2 t . Xác định tọa độ điểm là điểm đối xứng với M qua đường thẳng d.




Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;0;1), B(1;2;1), C(4;1;-2) và mặt phẳng P : x + y + z = 0 . Tìm trên (P) điểm M sao cho M A 2 + M B 2 + M C 2 đạt giá trị nhỏ nhất. Khi đó M có tọa độ:
A. M(1;1;-1)
B. M(1;1;1)
C. M(1;2;-1)
D. M(1;0;-1)
Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;3;-2) và hai đường thẳng d 1 : x - 1 2 = y - 2 3 = z 1 , d 2 : x + 1 - 1 = y - 1 2 = z - 2 4 . Đường thẳng d qua M cắt d 1 , d 2 lần lượt tại A và B. Độ dài đoạn thẳng AB bằng
A. 3
B. 2
C. 6
D. 5
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d: x = 1 + t y = 2 + 3 t z = 3 - t và d': x = 2 - 2 t ' y = - 2 - t ' z = 1 + 3 t ' . Tìm tọa độ M giao điểm của d và d'.
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto làm vectơ chỉ phương và song song với mặt phẳng (P): 2x+y+z=0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:
A. 15
B. 13
C. 16
D. 14