Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y - 1 = z + 2 3 và điểm A(1;0;0).
Mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d có phương trình là
A. z - 2z - 1 = 0
B. x + y - z - 1 = 0
C. 2x - y + 3z - 2 = 0
D. 2x + y + 3z - 2 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;1), B(2;1;2) và mặt phẳng (P):x+2y+3z+3=0. Phương trình mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng là:
A. x + 2y -z +6 =0
B.x + 2y -3z +6 =0
C. x -2y + z-2 =0
D. x + 2y -3z +6 =0
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm A(0;1;0), B(2;3;1) và vuông góc với mặt phẳng (Q):x+2y-z=0 có phương trình là
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng α đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng β : 3x+y-2z+5=0 là:
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;1), C(-2;0;1). Phương trình mặt phẳng đi qua A và vuông góc với BC là:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;0), C(-2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng ( ABC) có phương trình là
A. 4x + 2y - z + 4 = 0
B. 4x + 2y + z - 4 = 0
C. 4x - 2y - z + 4 = 0
D. 4x - 2y + z + 4 = 0
Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng ∆ đi qua điểm A ( 2 ; - 1 ; 3 ) và vuông góc với mặt phẳng (Oxz) là.
A. x = 2 y = 1 - t z = 3
B. x = 2 y = 1 + t z = 3
C. x = 2 y = - 1 + t z = 3
D. x = 2 + t y = - 1 z = 3 + t
Trong không gian với hệ tọa độ Oxy, cho hai điểm A(2;3;1), B(0;1;2). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:
A. (P): 2x+2y-z=0
B. (P): 2x+2y-z-9=0
C. (P): 2x+4y+3z-19=0
D. (P): 2x+4y+3z-10=0.
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua điểm G(1;1;1) và vuông góc với đường thẳng OG có phương trình là:
A. x+y+z-3=0
B. x-y+z=0
C. x+y-z-3=0
D. x+y+z=0.