Gọi I = d ∩ ∆. Do I ∈ ∆ nên I (2t + 1; t – 1; -t). Suy ra
Suy ra , từ đó suy ra d có một vectơ chỉ phương là và đi qua M (2;1; 0) nên có phương trình:
Gọi I = d ∩ ∆. Do I ∈ ∆ nên I (2t + 1; t – 1; -t). Suy ra
Suy ra , từ đó suy ra d có một vectơ chỉ phương là và đi qua M (2;1; 0) nên có phương trình:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng ∆ : x - 1 2 = y + 1 1 = z - 1 . Phương trình tham số của đường thẳng d đi qua điểm M, cắt và vuông góc với ∆ là
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2 ; 1 ; 0) và đường thẳng ∆ : x - 1 2 = y + 1 1 = z - 1 . Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là:
A . d : x = 2 + t y = 1 - 4 t z = - 2 t
B . d : x = 2 - t y = 1 + t z = t
C . d : x = 1 + t y = - 1 - 4 t z = 2 t
D . d : x = 2 + 2 t y = 1 + t z = - t
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng d có phương trình d : x - 1 2 = y + 1 1 = z - 1 Phương trình của đường thẳng ∆ đi qua điểm, M cắt và vuông góc với đường thẳng d là:
A. x - 2 1 = y - 1 - 4 = z - 2
B. x - 2 - 1 = y - 1 - 4 = z 2
C. x - 2 - 1 = y - 1 - 3 = z 2
D. x - 2 - 3 = - y - 1 - 4 = z - 2
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d: z = 1 + t y = 2 t z = - 1 , điểm M(1;2;−1) và mặt phẳng . Đường thẳng Δ đi qua M , song song với (P) và vuông góc với d có phương trình là
Trong không gian với hệ tọa độ Oxyz cho hai điểm A ( 1 ; - 1 ; 1 ) , B ( - 1 ; 2 ; 3 ) và đường thẳng ∆ : x + 1 - 2 = y - 2 1 = z - 3 3 . Phương trình đường thẳng d đi qua điểm A, đồng thời vuông góc với hai đường thẳng AB và Δ là
A. x - 7 1 = y - 2 - 1 = z - 4 1
B. x - 1 7 = y + 1 2 = z - 1 4
C. x + 1 7 = y - 1 - 2 = z + 1 4
D. x + 1 7 = y - 1 2 = z + 1 4
Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d 1 : x - 2 2 = y + 2 - 1 = z - 3 1 và d 2 : x - 1 - 1 = y - 1 2 = z + 1 1 . Phương trình đường thẳng ∆ đi qua điểm A(1;2;3) vuông góc với d1 và cắt d2 là:
A. x - 1 1 = y - 2 - 3 = z - 3 - 5
B. x - 1 1 = y + 2 - 3 = z + 3 - 5
C. x + 1 - 1 = y + 2 3 = z + 3 5
D. x - 1 1 = y + 3 - 2 = z + 5 - 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 (P): x + 2y - 3z + 4 = 0. Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng ∆ là
A. x = - 2 + 2 t y = 1 - t z = 1 + t
B. x = 1 - 3 t y = - 2 + 3 t z = - 1 + t
C. x = - 3 - 3 t y = 1 + 2 t z = 1 + t
D. x = - 3 + t y = 1 - 2 t z = 1 - t
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 1 2 = y 3 = z + 1 - 1 và hai điểm A(1; 2; -1); B (3; -1; -5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ điểm B đến đường thẳng d là lớn nhất. Phương trình đường thẳng d là:
A . x - 3 2 = y 2 = z + 5 - 1
B . x - 1 = y + 2 3 = z 4
C . x + 2 3 = y 1 = z - 1 - 1
D. Tất cả sai