Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;2;3). Mặt phẳng α đi qua G cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt Ox tại A, Oy tại B, Oz tại C. Biết G(1;2;3) là trọng tâm của tam giác ABC, xác định phương trình mặt phẳng (P).
Trong không gian Oxyz, cho điểm G(1;2;3) là trọng tâm của tam giác ABC trong đó A thuộc trục Ox, B thuộc trục Oy, C thuộc trục Oz. Tọa độ các điểm A, B, C là:
A. A(1; 0; 0), B(0; 2; 0), C(0; 0; 3)
B. A(3; 0; 0), B(0; 6; 0), C(0; 0; 9)
C. A(-3; 0; 0), B(0; -6; 0), C(0; 0; -9)
D. A(6; 0; 0), B(0; 3; 0), C(0; 0; 9)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-3;2), B(0;1;-1) và G(2;-1;1). Tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm là:
Trong không gian với hệ tọa độ Oxyz , cho sáu điểm A(0;1;2), B(2;-1;-2), C(3;1;2) thỏa mãn A A ' → + B B ' → + C C ' → . Gọi G′ là trọng tâm tam giác A′B′C′ thì G′ có tọa độ là
Trong không gian với hệ tọa độ Oxyz, cho A(1;2;3), B(0;-2;1), C(1;0;1). Gọi D là điểm sao cho C là trọng tâm tam giác ABD. Tính tổng các tọa độ của D
A. 1
B. 0
C. 7 3
D. 7
Trong không gian với hệ tọa độ Oxyz, cho tam
giác ABC có A (1;-2;3), B (-1;0;2) và G (1;-3;2)
là trọng tâm tam giác ABC. Tìm tọa độ điểm C.
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;3;5), B(2;0;1), C(0;9;0) Tọa độ trọng tâm G của tam giác ABC là
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(3;0;0), B(0;3;0) và C(0;0;3). Tìm tọa độ trọng tâm G của tam giác ABC.
A. G(3;3;3)
B. G(1;1;1)
C. G(2/3;2/3;2/3)
D. G(1/3;1/3;1/3).