Đáp án B.
Đường thẳng
là trung điểm của AB, AN và BN
Đáp án B.
Đường thẳng
là trung điểm của AB, AN và BN
Trong không gian Oxyz, cho hai điểm A 6 ; − 3 ; 4 , B a ; b ; c . Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng tọa độ (Oxy), (Oxz), (Oyz). Biết rằng M, N, P nằm trên đoạn AB sao cho AM = MN = NP = PB. Tính giá trị của tổng a + b + c
A. 11
B. -11
C. 17
D. -17
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2;-3), B(2;0;1), C(3;-1;1). Gọi M là điểm di động trên mặt phẳng (Oyz). Tìm giá trị nhỏ nhất của biểu thức P = 3 M B → + M C → + 2 M A → + 2 M B →
A. 42 6
B. 42
C. 3 82
D. 82 2
Trong không gian với hệ tọa độ Oxyz, gọi a,b,c lần lượt là khoảng cách từ điểm M(1;3;2) đến ba mặt phẳng tọa độ (Oxy), (Oyz), (Oxz). Tính P = a + b 2 + c 3
A. 12
B. 32
C. 30
D. 18
Trong không gian với hệ tọa độ Oxyz, gọi a,b,c lần lượt là khoảng cách từ điểm M(1;3;2) đến ba mặt phẳng tọa độ (Oxy), (Oyz), (Oxz). Tính P = a + b 2 + c 3
A. 12
B. 32
C. 30
D. 18
Trong không gian với hệ toạ độ Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục toạ độ Ox, Oy, Oz lần lượt tại các điểm A, B, C không trùng với gốc toạ độ sao cho M là trực tâm của tam giác ABC. Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (P).
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), B(0;0;b). Gọi (P) là mặt phẳng chứa d và d'; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d' lần lượt tại B, B'. Hai đường thẳng cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → = ( 15 ; - 10 ; - 1 ) (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = -9
D. 6
Trong không gian với hệ tọa độ O x y z , cho các điểm A ( 1 ; 0 ; 0 ) , B ( 3 ; 2 ; 0 ) , C ( - 1 ; 2 ; 4 ) . Gọi M là điểm thay đổi sao cho đường thẳng M A , M B , M C hợp với mặt phẳng ( A B C ) các góc bằng nhau; N là điểm thay đổi nằm trên mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 1 2 . Tính giá trị nhỏ nhất của độ dài đoạn M N
A. 3 2 2
B. 2
C. 2 2
D. 6
Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2;-3;7), B(0;4;1), C(3;0;5) và D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức M A → + M B → + M C → + M D → đạt giá trị nhỏ nhất. Khi đó tọa độ của M là:
A. M (0;1;-4)
B. M (2;1;0)
C. M (0;1;-2)
D. M (0;1;4)
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1;2-0), B(2;-3;2). Gọi (S) là mặt cầu đường kính AB. Ax, By là hai tiếp tuyến với mặt cầu (S) và A x ⊥ B y . Gọi M, N lần lượt là điểm di động trên Ax, By sao cho đường thẳng MN luôn tiếp xúc với mặt cầu (S). Tính giá trị của AM.BN.
A. AM.BN = 19
B. AM.BN = 24
C. AM.BN = 38
D. AM.BN = 48