Trong không gian với hệ tọa độ Oxyz. cho vec tơ (0;1;1). Mặt phẳng nào trong các mặt phẳng được cho bởi các phương trình dưới đây nhận vectơ n làm vectơ pháp tuyến
A. x=0
B. y+z=0
C. z=0
D. x+y=0
Trong không gian hệ tọa độ Oxyz, cho mặt phẳng α : 2x+y-z+1=0 . Vectơ nào sau đây không là vecto pháp tuyến của mặt phẳng α
A. (4;2;-2)
B. (-2;-1;1)
C. (2;1;1)
D. (2;1;-1)
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 3x-y+z+1=0. Trong các vecto sau , véc tơ nào không phải là vecto pháp tuyến của mặt phẳng (P)
A. (-3;-1;-1)
B. (6;-2;2)
C. (-3;1;-1)
D. (3;-1;1)
Trong không gian (Oxyz) một mặt phẳng α : 2x-3z+2=0. Vecto nào dưới đây là vectơ pháp tuyến của mặt phẳng
A. (2;-3;2)
B. (2;3;2)
C. (2;0;-3)
D. (2;2;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2z+z+2017=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (1;-1;4)
B. (1;-2;2)
C. (2;2;1)
D. (-2;2;-1)
Trong không gian Oxyz, cho mặt phẳng có phương trình x-z-1=0. Một vecto pháp tuyến của (P) có tọa độ là
A. (1;1;-2)
B. (1;-1;0)
C. (1;0;-1)
D. (1;-1;-1)
Trong không gian (Oxyz) , cho mặt phẳng (P) có phương trình 3x+2y-z+1=0 , Mặt phẳng (P) có vecto pháp tuyến là
A. (3;-1;2)
B. (2;3;-1)
C. (3;2;-1)
D. (-1;3;2)
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) có phương trình y − z + 2 = 0 . Vectơ nào dưới đây là vectơ pháp tuyến của (P)?
A. n → = ( 1 ; − 1 ; 2 ) .
B. n → = ( 1 ; − 1 ; 0 ) .
C. n → = ( 0 ; 1 ; − 1 ) .
D. n → = ( 0 ; 1 ; 1 ) .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+y+2=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (2;0;1)
B. (2;1;0)
C. (2;1;2)
D. (2;-1;0)