Chọn B
Ta có H (a;b;c) là trực tâm tam giác ABC nên ta có
Đường thẳng đi qua trực tâm H (2;1;1) của tam giác ABC và vuông góc với mặt phẳng (ABC) có vecto chỉ phương có phương trình là
Chọn B
Ta có H (a;b;c) là trực tâm tam giác ABC nên ta có
Đường thẳng đi qua trực tâm H (2;1;1) của tam giác ABC và vuông góc với mặt phẳng (ABC) có vecto chỉ phương có phương trình là
Trong không gian Oxyz, cho tam giác ABC với A(3;0;0), B(0;6;0), c(0;0;6). Phương trình nào dưới đây là phương trình đường thắng đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC).
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A 2 ; 3 ; 1 , B − 1 ; 2 ; 0 , C 1 ; 1 ; − 2 . Đường thẳng d đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là
A. x − 1 1 = y + 5 − 8 = z − 4 5 .
B. x − 2 1 = y + 13 − 8 = z − 9 5 .
C. x + 1 1 = y − 11 − 8 = z + 6 5 .
D. x − 3 1 = y + 21 − 8 = z − 14 5 .
Trong không gian Oxyz, cho tam giác đều ABC với A(6;3;5) và đường thẳng BC có phương trình tham số x = 1 - t y = 2 + t z = 2 t . Gọi ∆ là đường thẳng qua trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC). Điểm nào dưới đây thuộc đường thẳng ∆ ?
Trong không gian tọa độ Oxyz, cho tam giác ABC biết A (1;0;-1), B (2;3;-1), C (-2;1;1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp của tam giác ABC và vuông góc với mặt phẳng (ABC) là:
Trong không gian tọa độ Oxyz, cho tam giác ABC biết A (1; 0; -1), B (2; 3; -1), C (-2; 1; 1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp của tam giác ABC và vuông góc với mặt phẳng (ABC) là:
A . x 3 = y - 2 - 1 = z 5
B . x 3 = y - 2 1 = z 5
C . x - 1 1 = y - 2 = z + 1 2
D . x - 3 3 = y - 2 - 1 = z - 5 5
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;0), C(-2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng ( ABC) có phương trình là
A. 4x + 2y - z + 4 = 0
B. 4x + 2y + z - 4 = 0
C. 4x - 2y - z + 4 = 0
D. 4x - 2y + z + 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A ( 2 ; 1 ; - 2 ) ; B ( 4 ; - 1 ; 1 ) v à C ( 0 ; - 3 ; 1 ) . Phương trình d đi qua trọng tâm của tam giác ABC và vuông góc với mặt phẳng (ABC) là
A. x = 2 + t y = - 1 - 2 t z = - 2 t
B. x = - 2 + t y = - 1 - 2 t z = - 2 t
C. x = 2 + t y = 1 - 2 t z = - 2 t
D. x = 2 + t y = 1 + 2 t z = 2 t
Trong không gian tọa độ Oxy cho tam giác ABC biết A(1;0;-1), B(2;3;-1), C(-2;1;1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp cảu tam giác ABC và vuông góc với mặt phẳng (ABC).
A. x - 3 3 = y - 1 - 1 = z - 5 5
B. x 3 = y - 2 1 = z 5
C. x - 1 1 = y - 2 = z + 1 2
D. x - 3 3 = y - 2 1 = z 5
Trong không gian Oxyz, cho tam giác ABC với A ( 1 ; - 2 ; 3 ) , B ( - 4 ; 0 ; - 1 ) và C ( 1 ; 1 ; - 3 ) . Phương mặt phẳng (P) đi qua A, trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC) là: