Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y+z=0 và đường thẳng d : x + 1 1 = y 2 = z - 1 . Gọi ∆ là một đường thẳng chứa trong (P) cắt và vuông góc với d. Vectơ u → = ( a ; 1 ; b ) một vectơ chỉ phương của ∆ . Tính tổng S = a+ b.
A. 1
B. 0
C. 2
D. 4
Trong không gian Oxyz, cho hai điểm A(1;-2;3) và B(3;4;-1) và đường thẳng delta: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{2}\) . Gọi (P) là ax +by +cz-13=0 là mặt phẳng chứa delta và cách đều hai điểm A,B . Tổng S = a+b+c bằng
Trong không gian Oxyz cho đường thẳng d : x 2 = y 2 = z + 3 - 1 và mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi △ là đường thẳng đi qua A(2;1;3), vuông góc với đường thẳng d và cắt (S) tại hai điểm có khoảng cách lớn nhất. Khi đó đường thằng △ có một véctơ chỉ phương là u → = ( 1 ; a ; b ) . Tính
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y+z+3=0 và mặt cầu S : x − 1 2 + y + 3 2 + z 2 = 9 và đường thẳng d : x − 2 = y + 2 1 = z + 1 2 . Cho các phát biểu sau đây:
I. Đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt.
II. Mặt phẳng (P) tiếp xúc với mặt cầu (S)
III. Mặt phẳng (P) và mặt cầu (S) không có điểm chung
IV. Đường thẳng d cắt mặt phẳng (P) tại 1 điểm
Số phát biểu đúng là
A. 4
B. 1
C. 2
D. 3
Trong không gian với hệ tọa độ Oxyz, biết M (a;b;c)
(với a > 0) là điểm thuộc đường thẳng ∆ : x 1 = y + 2 - 1 = z - 1 2
và cách mặt phẳng (P): 2x - y + 2z - 5 = 0 một khoảng bằng 2.
Tính giá trị của T = a + b + c
A. T= -1
B. T = -3
C. T = 3
D. T = 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng (P): 2x+y-2z+2=0. Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là:
Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng P : x - 2 y + 2 z - 5 = 0 . Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u → = 1 ; b ; c khi đó b c bằng
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P):x+y+z+2=0. Đường thẳng ∆ nằm trong mặt phẳng (P) vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆ . Giá trị của bc bằng
A. -10
B. 10
C. 12
D. -20