Trong không gian Oxyz cho mặt phẳng (P): 2x-2y-z-4=0 và mặt cầu (S): x 2 + y 2 + z 2 - 2 x - 4 y - 6 z - 11 = 0 . Biết rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn (C). Tọa độ điểm H là tâm đường tròn (C) là:
A. H(3;0;2)
B. H(-1;4;4)
C. H(2;0;3)
D. H(4;4;-1)
Trong không gian tọa độ Oxyz, cho mặt cầu (S): ( x - 2 ) 2 + y 2 + ( z + 1 ) 2 = 9 và mặt phẳng (P): 2x-y-2z-3=0. Biết rằng mặt cầu (S) cắt (P) theo giao tuyến là đường tròn (C). Tính bán kính R của (C)
Trong không gian Oxyz , cho mặt cầu
( S ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 25 và mặt phẳng
( P ) : x - 2 y + 2 z + 8 = 0 . Biết (S) cắt (P) theo giao tuyến là một đường tròn có bán kính bằng
A. 3
B. 4
C. 1
D. 2
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 25 và mặt phẳng (P): x-2y+2z+8=0. Biết (S) cắt (P) theo giao tuyến là một đường tròn có thể tích bằng
A.3
B. 4
C. 1
D. 2
Trong không gian Oxyz cho các mặt phẳng (P): x - y + 2z + 1= 0, (Q): 2x + y + z - 1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3
B. r = 3 2
C. r = 2
D. r = 3 2 2
Trong không gian hệ tọa độ Oxyz cho mặt cầu (S): x 2 + y 2 + z 2 -2x + 2y - 4z -10 = 0 và mặt phẳng (P): 2x + y - z - 5 = 0. Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P) và cắt mặt cầu (S) theo đường tròn có bán kính bằng một nửa bán kính mặt cầu (S)
Trong không gian Oxyz, cho điểm A ( 0 ; 1 ; 2 ) , mặt phẳng α : x - y + z - 4 = 0 và mặt cầu S : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x'Ox là:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : x − y + 2 z + 1 = 0 và ( Q ) : 2 x + y + z − z = 0. Gọi (S) là mặt cầu có tâm thuộc Ox, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có duy nhất một mặt cầu (S) thỏa mãn điều kiện bài toán
A. r = 3 2 2 .
B. r = 10 2 .
C. r = 3 .
D. r = 14 2 .
Trong không gian Oxyz, cho mặt cầu S : x - a 2 + y - 2 2 + z - 3 2 = 9 và mặt phẳng ( P ) : 2 x + y + 2 z – 1 = 0 . Giá trị của a để (P) cắt mặt cầu (S) theo đường tròn (C)
A. - 17 2 ≤ a ≤ 1 2
B. - 17 2 < a < 1 2
C. -8 < a < 1
D. - 8 ≤ a ≤ 1