Chọn D
Gọi A (a;0;0), B (0;b;0); C (0;0;c). Ta có OA = |a|; |OB| = b; |OC| = |c|.
Phương trình mặt phẳng đi qua ba điểm A, B, C là
Theo giả thiết ta có điểm
Vì OA=OB=OC => |a| = |b| = |c| nên ta có hệ phương trình
Vậy có 3 mặt phẳng thỏa mãn.
Chọn D
Gọi A (a;0;0), B (0;b;0); C (0;0;c). Ta có OA = |a|; |OB| = b; |OC| = |c|.
Phương trình mặt phẳng đi qua ba điểm A, B, C là
Theo giả thiết ta có điểm
Vì OA=OB=OC => |a| = |b| = |c| nên ta có hệ phương trình
Vậy có 3 mặt phẳng thỏa mãn.
Trong không gian Oxyz cho điểm M(1;3;-2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox, y'Oy,z'Oz lần lượt tại ba điểm phân biệt A, B, C sao cho OA=OB=OC ≠ 0
A. 3
B. 2
C. 1
D. 4
Trong không gian Oxyz cho điểm M(1;3;-2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox, y'Oy, z'Oz lần lượt tại ba điểm phân biệt A, B, C sao cho OA=OB=OC ≠ 0.
A. 1.
B. 2.
C. 4.
D. 3.
Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt trục x'Ox, y'Oy, z'Oz lần lượt tại các điểm A, B, C sao cho OA=2OB=3OC>0.
A. 4
B. 6
C. 3
D. 2
Trong không gian Oxyz cho điểm M (3; 2; 1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox, y'Oy, z'Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC.
A. 3x + y + 2z - 14 = 0
B. 3x + 2y + z - 14 = 0
C . x 9 + y 3 + z 6 = 1
D . x 12 + y 4 + z 4 = 1
Trong không gian Oxyz cho điểm M(3;2;1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox; y'Oy;z'Oz lần lượt tại các điểm A, B, C sao cho M là trực tâm của tam giác ABC.
A. 3x+y+2z-14=0
B. 3x+y+z-14=0
C. x 9 + y 3 + z 6 = 1
D. x 12 + y 4 + z 4 = 1
Trong không gian Oxyz, cho điểm M(1;-3;2). Hỏi có bao nhiêu mặt phẳng đi qua M và cắt các trục tọa độ tại A, B, C mà O A = O B = O C ≠ 0 ?
A. 3.
B. 1.
C. 4.
D. 2.
Trong không gian Oxyz, cho điểm M(1;-3;2). có bao nhiêu mặt phẳng đi qua M và cắt các trục tọa độ tại A, B, C mà OA=OB=OC ≠ 0?
A. 3
B. 1
C. 4
D. 2
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;-1;0).
Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục Ox,
Oy, Oz lần lượt tại các điểm A, B, C sao cho O A = 2 O B = 3 O C ≠ 0 ?
Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;1;9). Gọi (P) là mặt phẳng đi qua M và cắt 3 tia Ox, Oy, Oz lần lượt tại các điểm A,B,C (khác 0) sao cho (OA+OB+OC) đạt giá trị nhỏ nhất. Tính khoảng cách d từ điểm I(0;1;3) đến mặt phẳng (P).
A. d= 34 5
B. d= 36 5
C. d= 24 7
D. d= 30 7