Trong không gian với hệ tọa độ Oxyz, gọi điểm M(a;b;c) ( với a,b,c tối giản) thuộc mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 4 y - 4 z - 7 = 0 sao cho biểu thức T=2a+3b+6c đạt giá trị lớn nhất. Khi đó giá trị biểu thức P=2a-b+c bằng
A. 12 7
B. 8
C. 6
D. 51 7
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C (0;0;c), trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I (1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị lớn nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?
A. a + b + c = 12
B. a2 + b = c - 6
C. a + b + c = 18
D. a + b - c = 0
Trong không gian Oxyz, cho các điểm A(a;0;0), B(0;b;0), C(0;0;c) di động trên các trục Ox, Oy, Oz sao cho 2a+b-c-6=0 và hai điểm M(2;-3;5). Xét các mặt cầu (S) ngoại tiếp tứ diện OABC có tâm I. Khi 2 I M → + I N → đạt giá trị nhỏ nhất thì mặt cầu (S) có diện tích bằng
A. 14 π .
B. 64 π .
C. 56 π .
D. 16 π .
Trong không gian Oxyz, cho ba điểm A (-1; 0; 1), B (3; 2; 1), C (5; 3; 7). Gọi M (a; b; c) là điểm thỏa mãn MA = MB và MB + MC đạt giá trị nhỏ nhất. Tính P = a + b + c
A. P = 4
B. P = 0
C. P = 2
D. P = 5
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a,b,c là các số thực thay đổi thỏa mãn 1 a - 1 b + 1 c = 1 . Biết rằng mặt cầu S : x - 2 2 + y - 1 2 + z - 3 2 = 25 cắt mặt phẳng (ABC) theo giao tuyến là một đường tròn có bán kính bằng 4. Giá trị của biểu thức a+b-c bằng
Trong không gian Oxyz cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 9 và điểm M ( a ; b ; c ) ∈ ( S ) sao cho biểu thức P=2a+2b+2c đạt giá trị nhỏ nhất. Tính T=a+b+c.
A. 2
B. 1
C. -2
D. -1
Trong không gian với hệ tọa độ Oxyz, cho các điểm A( 0,1,1) B(0,-2,-2) và điểm M di động trên trục cao. Tính giá trị nhỏ nhất m của tổng T = MA+MB
Trong không gian Oxyz, cho hai điểm A(1;-1;2),B(3;-4;-2)và đường thẳng
d : x = 2 + 4 t y = - 6 t z = - 1 - 8 t . Điểm I(a,b,c) thuộc d là điểm thỏa mãn IA + IB đạt giá trị nhỏ nhất. Khi đó T = a + b + c bằng
A. 23 58
B. - 43 58
C. 65 29
D. - 21 58
Trong không gian với hệ trục Oxyz, cho tam giác ABC với A(2;0;-3); B(-1;-2;4); C(2;-1;2). Biết điểm E(a,b,c) là điểm để biểu thức P = E A → + E B → + E C → đạt giá trị nhỏ nhất. Tính T=a+b+c
A. T=3
B. T=1
C. T=0
D. T=-1