Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x - y + z + 3 = 0 và ba điểm A(0;1;2), B(1;1;1), C(2;-2;3) Tọa độ điểm M thuộc (P) sao cho M A → + M B → + M C → nhỏ nhất là
A. M(0;0;−3)
B. M(1;1;−3)
C. M(−1;2;0)
D. M(2;1;−1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+2y+z-3=0 và ba điểm A 0 ; 1 ; 2 , B 2 ; − 2 ; 1 , C − 2 ; 0 ; 1 . Biết rằng tồn tại điểm M a ; b ; c thuộc mặt phẳng (P) và cách đều ba điểm A,B,C. Tính giá trị của biểu thức T = a 3 + b 3 + c 3 .
A. 308
B. 378
C. -308
D. 27
Trong không gian Oxyz, cho ba điểm A(1;0;0), B(0;3;0), C(0;0;-2). Phương trình của mặt phẳng (P) đi qua điểm D(1;1;1) và song song với mặt phẳng (ABC) là
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1),C(-2;0;1) và mặt phẳng ( P ) : 2 x + 2 y + z - 3 = 0 .Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng (P): 2x+2y+z-3=0. Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
Trong không gian với hệ tọa độ Oxyz cho 3 điểm A(0;1;2), B(2;-2;1), C(-2;0;1), tìm tọa độ của điểm M thuộc mặt phẳng (apha): 2x+2y+z-3=0. Sao cho MA = MB = MC.
Trong không gian với hệ tọa độ O x y z , cho các điểm A ( 1 ; 0 ; 0 ) , B ( 3 ; 2 ; 0 ) , C ( - 1 ; 2 ; 4 ) . Gọi M là điểm thay đổi sao cho đường thẳng M A , M B , M C hợp với mặt phẳng ( A B C ) các góc bằng nhau; N là điểm thay đổi nằm trên mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 1 2 . Tính giá trị nhỏ nhất của độ dài đoạn M N
A. 3 2 2
B. 2
C. 2 2
D. 6
Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-1=0 và hai điểm A (1;-3;0), B (5;-1;-2). Điểm M (a;b;c) nằm trên (P) và |MA – MB| lớn nhất. Giá trị abc bằng:
A. 1
B. 12
C. 24.
D. -24.
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .