Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là:
A(a; 0; 0), B(0; b; 0), C(0; 0; c)
Chứng minh rằng tam giác ABC có ba góc nhọn.
Trong không gian tọa độ Oxyz cho A (1; 1; -1), B (2; 3; 1), C (5; 5; 1). Đường phân giác trong góc A của tam giác ABC cắt mặt phẳng (Oxy) tại M (a; b; 0). Tính 3b-a.
A. 6.
B. 5.
C. 3.
D. 0.
Trong không gian với hệ tọa độ Oxyz, cho các điểm A (2; 0; 0); B (0; 3; 0); C (0; 0 ;4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH.
A . x = 4 t y = 3 t z = - 2 t
B . x = 3 t y = 4 t z = 2 t
C . x = 6 t y = 4 t z = 3 t
D . x = 4 t y = 3 t z = 2 t
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Trong không gian Oxyz cho ba điểm A (1; 2; 3), B (1; 0; -1), C (2; -1; 2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng 3 30 10 có tọa độ là:
A. (0; 0 ; 1)
B. (0; 0 ; 3)
C. (0; 0 ; 2)
D. (0; 0 ; 4)
xin chào các bạn bạn giúp mình làm bài toán này nhé:
câu 1 :Trong không gian Oxyz, cho A(3;4;2),B(-1;-2;2). Tìm điểm c sao cho điểm G(1;1;2) là trọng tâm của tam giác ABC
CÂU 2: Trong không gian Oxyz ,cho A(1;0;0), B(0;0;1), C(2;1;1). a, Chứng minh A,B,C không thẳng hàng b, Tính chu vi và diện tích tam giác ABC c, Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A
CÂU 3: a, Tìm tọa độ tâm và bán kính của mặt cầu (S) :9x2+9y2+9z2-6x+18y+1=0 b, Viết phương trình mặt cầu đi qua bốn điểm A(6;-2;3), B(0;1;6), C(2;0;-1) và D(4;1;0)
Trong không gian tọa độ Oxyz, cho tam giác ABC biết A (1; 0; -1), B (2; 3; -1), C (-2; 1; 1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp của tam giác ABC và vuông góc với mặt phẳng (ABC) là:
A . x 3 = y - 2 - 1 = z 5
B . x 3 = y - 2 1 = z 5
C . x - 1 1 = y - 2 = z + 1 2
D . x - 3 3 = y - 2 - 1 = z - 5 5
Trong không gian Oxyz, cho ba điểm A ( 3 ; 1 ; 0 ) , B ( 0 ; - 1 ; 0 ) , C ( 0 ; 0 ; - 6 ) . Nếu tam giác A’B’C’ có các đỉnh thỏa mãn hệ thức A ' A → + B ' B → + C ' C → = 0 → thì tam giác A’B’C’ có tọa độ trọng tâm là
Trong không gian Oxyz, cho ba điểm A(1;-2;0) B2;-1;3) C ( 0;-1;1) . Đường trung tuyết AM của tam giác ABC có phương trình là