Trong không gian Oxyz cho A(4;-2;6), B(2;4;2), M ∈ α : x + 2 y - 3 z - 7 = 0 sao cho M A → . M B → nhỏ nhất. Tọa độ của M bằng
A. 29 13 ; 58 13 ; 5 13
B. (4;3;1)
C. (1;3;4)
D. 37 3 ; - 56 3 ; 68 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - 2y + z -1 = 0 và điểm A (0; -2; 3), B (2; 0; 1). Điểm M (a; b; c) thuộc (P) sao cho MA + MB nhỏ nhất.
Giá trị của a2 + b2 + c2 bằng:
A. 41/4
B. 9/4
C. 7/4
D. 3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x - y + z + 3 = 0 và ba điểm A(0;1;2), B(1;1;1), C(2;-2;3) Tọa độ điểm M thuộc (P) sao cho M A → + M B → + M C → nhỏ nhất là
A. M(0;0;−3)
B. M(1;1;−3)
C. M(−1;2;0)
D. M(2;1;−1)
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;0;1), B(1;2;1), C(4;1;-2) và mặt phẳng P : x + y + z = 0 . Tìm trên (P) điểm M sao cho M A 2 + M B 2 + M C 2 đạt giá trị nhỏ nhất. Khi đó M có tọa độ:
A. M(1;1;-1)
B. M(1;1;1)
C. M(1;2;-1)
D. M(1;0;-1)
Trong không gian với hệ tọa độ Oxyz cho A(-3;0;0), B(0;0;3), C(0;-3;0) và mặt phẳng (P): x+y+z -3 =0. Tìm trên (P) điểm M sao cho M A → + M B → - M C → nhỏ nhất
A. M(3;3;-3)
B. M(-3;-3;3)
C. M(3;-3;3)
D. M(-3;3;3)
Trong không gian với hệ tọa độ Oxyz , cho A(−3;0;0), B(0;0;3), C(0; −3;0) và mặt phẳng (P): x + y + z - 3 = 0 . Tìm trên (P) điểm M sao cho M A ¯ + M B ¯ + M C ¯ nhỏ nhất.
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( α ) : x + y + z - 4 = 0 mặt cầu ( S ) : x 2 + y 2 + z 2 - 8 x - 6 y - 6 z + 18 = 2 và điểm M(1;1;2) ∈ ( α ) . Đường thẳng d đi qua M nằm trong mặt phẳng ( α ) và cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho dây cung AB có đọ dài nhỏ nhất. Đường thẳng d có một véc tơ chỉ phương là
A. u 1 → = ( 2 ; - 1 ; - 1 )
B. u 3 → = ( 1 ; 1 ; - 2 )
C. u 2 → = ( 1 ; - 2 ; 1 )
D. u 4 → = ( 0 ; 1 ; - 1 )
Trong không gian với hệ tọa độ Oxyz, cho A (-3;0;0), B (0;0;3), C (0;3;0) và mặt phẳng (P): x + y + z - 3 = 0. Tìm trên (P) điểm M sao cho M A → + M B → - M C → nhỏ nhất.
A. M (3;3;-3)
B. M (-3;-3;3)
C. M (3;-3;3)
D. M (-3;3;3)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng (α): x-y+z-4=0 và mặt cầu (S): (x-3)²+ (y-1)²+ (z-2)²=16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x'Ox là:
A . M - 1 2 ; 0 ; 0
B . M - 1 3 ; 0 ; 0
C . M 1 ; 0 ; 0
D . M 1 3 ; 0 ; 0