Trong không gian O x y z cho mặt cầu ( s ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 6 tiếp xúc với hai mặt phẳng ( P ) : x + y + 2 z + 5 = 0 , ( Q ) : 2 x - y + z - 5 = 0 lần lượt tại A và B. Độ dài đoạn thẳng AB là
A. 2 6
B. 3
C. 3 2
D. 2 3
Trong không gian tọa độ Oxyz, mặt cầu (S): ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 9 có tâm và bán kính là
A. I(4;-5;6), R=5
B. I(-4;5;-6), R=81
C. I(4;-5;6)
D. I(-4;5;-6), R=3
Trong không gian tọa độ Oxyz, mặt cầu: (S): ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 9 có tâm và bán kính lần lượt là
Trong không gian với hệ tọa độ Oxyz cho hai điểm A(3;-2;6),B(0;1;0) và mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Mặt phẳng (P): ax+by+cz-2=0 đi qua A và B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T=a+b+c
A. T=3
B. T=5
C. T=2
D. T=4
Trong không gian Oxyz, cho điểm A ( 0 ; 1 ; 2 ) , mặt phẳng α : x - y + z - 4 = 0 và mặt cầu S : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x'Ox là:
Trong không gian Oxyz , cho ba mặt cầu lần lượt có phương trình là ( x + 5 ) 2 + ( y - 1 ) 2 + z 2 = 5 ; x 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 6 và ( x + 1 ) 2 + y 2 + ( z - 4 ) 2 = 9 . Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y , Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu. Giả sử MX = MY = MZ , khi đó tập hợp các điểm M là đường thẳng có vectơ chỉ phương là
Trong không gian Oxyz, cho mặt cầu (S): ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 có bán kính bằng
A. 3
B. 2 3
C. 9
D. 3
Trong không gian OxyzOxyz cho hai điểm A(2;4;3)A(2;4;3) và B(2;7;1)B(2;7;1). Trong các phương trình dưới đây, phương trình nào là phương trình tham số của đường thẳng ABAB? (với t\in \Rt∈R)
A,\left\{{}\begin{matrix}x=2+2t\\y=7+4t\\z=1+3t\end{matrix}\right.⎩⎪⎨⎪⎧x=2+2ty=7+4tz=1+3t
B,\left\{{}\begin{matrix}x=4\\y=3+3t\\z=2-2t\end{matrix}\right.⎩⎪⎨⎪⎧x=4y=3+3tz=2−2t
c,\left\{{}\begin{matrix}x=2\\y=4-3t\\z=3+2t\end{matrix}\right.⎩⎪⎨⎪⎧x=2y=4−3tz=3+2t
d,\left\{{}\begin{matrix}x=2+2t\\y=4+7t\\z=3+t\end{matrix}\right.⎩⎪⎨⎪⎧x=2+2ty=4+7tz=3+t
Trong không gian Oxyz, cho tam giác ABC có điểm C 3 ; 2 ; 3 , đường cao qua A, B lần lượt là d 1 : x - 2 1 = y - 3 1 = z - 3 - 2 , d 2 : x - 1 1 = y - 4 - 2 = z - 3 1 . Hoành độ điểm A bằng
A. 3
B. 2
C. 5
D. 1
Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=25 và hai điểm A (3;-2;6), B (0;1;0). Mặt phẳng (P):ax+by+cz-2=0 chứa đường thẳng AB và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính giá trị của biểu thức M=2a+b-c.
A. M=2.
B. M=3.
C. M=1.
D. M=4.