Trong không gian Oxyz, cho hai điểm A(3;2;1), M(3;0;0) và mặt phẳng (P) có phương trình là: x + y + z - 3 = 0. Viết phương trình của đường thẳng d đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ A đến đường thẳng d nhỏ nhất
A. x = -3 - t, y = t, z = 0
B. x = 3 + t, y = 2t, z = 2t
C. x = 3 - t, y = t, z = 0
D. Đáp án khác
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 1 2 = y 3 = z + 1 - 1 và hai điểm A(1; 2; -1); B (3; -1; -5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ điểm B đến đường thẳng d là lớn nhất. Phương trình đường thẳng d là:
A . x - 3 2 = y 2 = z + 5 - 1
B . x - 1 = y + 2 3 = z 4
C . x + 2 3 = y 1 = z - 1 - 1
D. Tất cả sai
Trong không gian Oxyz, cho đường thẳng d : x - 2 1 = y - 1 - 2 = z - 1 2 và hai điểm A(3;2;1), B(2;0;4). Gọi là ∆ đường thẳng qua A, vuông góc với d sao cho khoảng cách từ B đến ∆ là nhỏ nhất. Gọi u → =(2;b;c) là một VTCP của ∆ . Khi đó, u → bằng
A. 17
B. 5
C. 6
D. 3
Trong không gian Oxyz, cho hai điểm M (-2;-2;1), A (1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 .Tìm véctơ chỉ phương u → của đường thẳng Δ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất.
Trong không gian Oxyz cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm véctơ chỉ phương u → của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;-1;-2) và đường thẳng d có phương trình x - 1 1 = y - 1 - 1 = z - 1 1 . Gọi (P) là mặt phẳng đi qua điểm A, song song với đường thẳng d và khoảng cách từ đường thẳng d tới mặt phẳng (P) là lớn nhất. Khi đó, mặt phẳng (P) vuông góc với mặt phẳng nào sau đây?
Trong không gian với hệ tọa độ Oxyz, cho (P): x - 2y + 2z -5 = 0, A (-3; 0; 1), b (1; -1; 3). Viết phương trình đường thẳng d đi qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.
A . x + 3 1 = y - 1 = z - 1 2
B . x + 3 3 = y - 2 = z - 1 2
C . x - 1 1 = y - 2 = z - 1 2
D . x + 3 2 = y - 6 = z - 1 - 7
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;-7;-8), B(2;-5;-9) sao cho khoảng cách từ điểm M(7;-1;-2) đến (P) lớn nhất có một vecto pháp tuyến là n → = ( a ; b ; 4 ) . Giá trị của tổng a + b là
A. 2
B. -1
C. 6
D. 3
Trong không gian với hệ tọa độ Oxyz, cho 4 điểm A 3 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; 6 , D 1 ; 1 ; 1 . Kí hiệu d là đường thẳng đi qua D sao cho tổng khoảng cách từ các điểm A, B, C đến d là lớn nhất. Hỏi đường thẳng d đi qua điểm nào dưới đây?
A. M − 1 ; − 2 ; 1
B. N 5 ; 7 ; 3
C. P 3 ; 4 ; 3
D. Q 7 ; 13 ; 5