Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh 1/4. Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn 1/4 .
Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh 1/4. Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn 1/4 .
Trong một tam giác có cạnh lớn nhất bằng 2, người ta lấy 5 điểm phân biệt. Chứng minh rằng trong 5 điểm đó luôn tồn tại hai điểm mà khoảng cách giữa chúng không vượt quá 1.
Bên trong 1 tam giác đều cạnh bằng 1 đặt 5 điểm. Chứng minh rằng tồn tại 2 điểm( trong 5 điểm đã cho) có khoảng cách nhỏ hơn 0,5.
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
Trên mp cho 2009 điểm sao cho trg 3 điểm bất kì nào cũng tồn tại 2 điểm có khoảng cách giữa chúng nhỏ hơn 1. CMR tồn tại một hình tròn có bán kính chứa ít nhất 1005 điểm trong 2009 điểm đã cho
Cho 13 điểm phân biệt nằm trong hoặc trên cạnh của một tam giác đều có cạnh bằng 6cm. Chứng minh rằng luôn tồn tại 2 điểm trong số 13 điểm đó sao cho khoảng cách giữa chúng không vượt quá \(\sqrt{3}\) cm.
Cho tam giác ABC nhọn có góc A = 60 độ , BC = 2\(\sqrt{3}\)cm
Bên trong tam giác này cho 13 điểm bất kì .
CMR trong 13 điểm ấy luôn tìm được 2 điểm mà khoảng cách giữa chúng không lớn hơn 1
Bên trong hình vuông cạnh 100, ta đặt một đường gấp khúc L có tính chất là mỗi điểm của hình vuông đều cách L một khoảng không lớn hơn 0,5. Chứng minh rằng khi đó trên L có hai điểm mà khoảng cách giữa chúng không lớn hơn 1 nhưng "khoảng cách" dọc theo L giữa chúng không nhỏ hơn 198.
cho 12 điểm trên mặt phẳng sao cho 3 điểm nào cũng là đỉnh của 1 tam giác mà mỗi tam giác đó luôn tồn tại ít nhất 1 cạnh có độ dài nhỏ hơn 673. Chứng minh rằng có ít nhất 2 tam giác mà chu vi của mỗi tam giác nhỏ hơn 2019.
cho 12 điểm trên mặt phẳng sao cho 3 điểm nào cũng là đỉnh của 1 tam giác mà mỗi tam giác đó luôn tồn tại ít nhất 1 cạnh có độ dài nhỏ hơn 673. Chứng minh rằng có ít nhất 2 tam giác mà chu vi của mỗi tam giác nhỏ hơn 2019.