Trong mặt phẳng tọa độ Oxy, cho các điểm M(0,4) và P(9, -3) .Tọa độ điểm N đối xứng với điểm M qua điểm P là : A. N(18,10) B. N(18, -10) C. N(9/2 ; 1/2) D. N(9; -7)
Các điểm M(2; 3), N(0; -4), P(-1; 6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC . Tọa độ đỉnh A của tam giác là:
A. (1; -10) B. (-3; 1) C. (-2; -7) D. (-3; -1)
Trên trục O ; i → cho 3 điểm A; B; C có tọa độ lần lượt là a; b;c . Tìm điểm I sao cho I A → + I B → + I C → = 0 →
A.
B.
C.
D.
Trong mặt phẳng Oxy , cho các điểm A( 1; 3) ; B( 4; 0) ; C(2; -5). Tọa độ điểm M thỏa mãn M A → + M B → - 3 M C → = 0 → là
A. M(1; -18).
B. M(1 ;18).
C. M(18; -1).
D. M(-18; -1).
Trên trục tọa độ O ; i → cho 2 điểm A ; B có tọa độ lần lượt 3 và – 5.Tọa độ trung điểm I của AB là :
A. 2
B. 4
C. -1
D. -2
: Cho tam giác ABC có ba đình A(4; 3) B(2; - 1) C(- 2; 5) . b) Tìm tọa độ điểm M thuộc trục tung sao cho | overleftrightarrow MA + overleftrightarrow MB | ngắn nhất a) Tìm tọa độ trọng tâm G của tam giác.
Trong mặt phẳng Oxy, cho các điểm A(-3; 3) ; B(1; 4) ; C( 2; -5). Tọa độ điểm M thỏa mãn 2 M A → - B C → = 4 C M → là:
A.
B.
C.
D.
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]
trong mặt phẳng tọa độ oxy, cho 3 điểm A (3;3) B (4;-2) C(-1;-1)
1. tính vecto AB và vecto BC từ đó suy ra A,B, C là ba đỉnh của một tam giác
2. Tìm tọa độ điểm M thỏa mãn vecto MA + 4MB - MC = 0
3. Cho hình bình hành ABCD. Gọi I là trung điểm cạnh bC và E là điểm xác định bởi vecto AE = 2/3AC. CMR: vecto DI = AB - 1/2AD và 3 điểm D, E, I thẳng hàng