Trên nửa tròn (O) đường kính AB lấy 2 điểm C, D sao cho \(\widebat{AC}< \widebat{AD}\), ( C\(\ne\)A, D\(\ne\)B). Các đoạn thẳng AD, BC cắt nhau tại H. Vẽ HE vuông góc với OA tại E, ( E nằm giữa hai điểm O và B). Chứng minh: OCDE là tứ giác nội tiếp
ai giỏi toán giúp mình với huhu
Trên nữa đường tròn (O) đường kính AB lấy hai điểm C, D sao cho cung AC < cung AD, (C khác A; D khác B). Các đoạn thẳng AD, BC cắt nhau tại H. vẽ HE vuông góc với OA tại E (E nằm giữa hai điểm O và B). Chứng minh: OCDE là tứ giác nội tiếp
Cho điểm C nằm trên nửa đường tròn tâm O bán kính R đường kính AB. sao cho\(\widebat{AC}>\widebat{BC}\)(\(C\ne B\)). Đường thẳng vuông góc với đường kính AB tại O cắt dây AC tại D.
a, CMR tứ giác BCDO là tứ giác nội tiếp.
b, CMR AD.AC = AO.AB
c, Tiếp tuyến tại C của đường tròn cắt đường thẳng đi qua D và song song với AB tại E. Tứ giác OEDA là hình gì? Tại sao?
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc với BC b) Từ B vẽ đường thẳng song song với AC cắt đường tròn tâm (O) tại D (D khác B), AD cắt đường tròn (O) tại E (E khác D). Tính tích AD.AE theo R. c) Tia BE cắt AC tại F. Chứng minh F là trung điểm AC. d) Tính theo R diện tích tam giác BDC.
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.
Cho đường tròn (O;R) và điểm A với OA = 2R. AB, AC tiếp xúc với (O) tại B và C. Đường thẳng d đi qua a cắt (O) tại D, E (AD < AE, tia AE nằm giữa các tia AO và AB). Đường thẳng OD cắt AB, BC tại F và M. Tiếp tuyến của (O) qua F cắt AC tại N. Đoạn ON cắt (O) tại K
a) Tính BC theo R và chứng minh tứ giác MNCO nội tiếp
b) Vẽ dây cung DP vuông góc với AO, H là giao điểm của AO với BC. Chứng minh tứ giác DHOE nội tiếp và P, H, E thẳng hàng.
c) Giả sử N, O, E thẳng hàng. Tính\(\frac{AD}{AE}\)
Cho nửa đường tròn tâm O đường kính AB. Điểm H nằm giữa A và B ( H ko trùng với O ). Đường thẳng vuông góc với AB tại H, cắt nửa đường tròn trên tại điểm C. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H đến AC và BC.
a. Tứ giác HDCE là hình gì? Vì sao?
b. Chứng minh ADEB là tứ giác nội tiếp
c. Gọi K là tâm đường tròn ngoại tiếp tứ giác ADEB. Chứng minh KO = 1/2DE