Trên đường tròn (O;R) đường kính ab lấy C. Trên tia AC lấy M sao cho C là trung điểm của AM.
a. Xác định vị trí C để AM lớn nhất
b. Xác định vị trí C để AM=2.R.√3
c. CMR : Khi C di chuyển trên (O) thì M di chuyển trên đường tròn cố định
Trên đường tròn (O;R) đường kính AB lấy điểm C. Trên tia AC lấy điểm M sao cho C là trung điểm của AM
a) Xác định vị trí của điểm C để AM có độ dài lớn nhất
b) Xác định vị trí của C để AM=2R\(\sqrt{3}\)
c) CMR: Khi C di động trên đường tròn (O) thì điểm M di động trên một đường tròn cố định
Cho đường tròn tâm O bán kính R, đường kính AB cố định. C thuộc OA ( C khác O, A ). M thuộc đường tròn tâm O trên
a) Tìm vị trí của M trên đường tròn để CM lớn nhất và nhỏ nhất
b) Gọi N là 1 điểm thuộc đường tròn ( O, R ) sao cho góc MCN = 90* . Gọi K là trung điểm của MN. CMR: Khi M di chuyển thì KO2 + KC2 có đại lượng không đổi
c) CMR: Khi M di chuyển thì K thuộc 1 đường tròn cố định
Cho đường tròn(O;R) đường kính AB và C là điểm nằm trên đường tròn. Gọi M là điểm đối xứng với A qua C
a)Hãy xác định vị trí điểm C trên (O;R) sao cho AM lớn nhất
b)Cho biết AM= 2R\(\sqrt{3}\). Hãy tìm số đo góc A
c)CMR M thuộc 1 đươngf tròn cố định khi C chạy trên (O;R)
Bài 1: Cho dường tròn tâm O đường kính AB; M là một điểm di động trên đường tròn( m khác A và B). Dựng đường tròn tâm M tiếp xúc với Ab tại H. Từ A và B kể tiếp tuyến BD và AC đến đường tròn tâm M.
a)Xác định vị trí tương đối của đường thẳng CD và đường tròn tâm O.
b) Tìm vị trí của M trên (O) để AC.BD đạt ghía trị lớn nhất.
c).lấy N là điểm cố định trên đường tròn (O); Gọi I là trung điểm của MN; P là hình chiếp của I trên MB; Khi M di chuyển trên (O) thì P chạy trên đường nào
Bài 1: Cho dường tròn tâm O đường kính AB; M là một điểm di động trên đường tròn( m khác A và B). Dựng đường tròn tâm M tiếp xúc với Ab tại H. Từ A và B kể tiếp tuyến BD và AC đến đường tròn tâm M.
a)Xác định vị trí tương đối của đường thẳng CD và đường tròn tâm O.
b) Tìm vị trí của M trên (O) để AC.BD đạt ghía trị lớn nhất.
c).lấy N là điểm cố định trên đường tròn (O); Gọi I là trung điểm của MN; P là hình chiếp của I trên MB; Khi M di chuyển trên (O) thì P chạy trên đường nào
Cho đường tròn (O;R) dây BC cố định. Điểm A di động trên cung lớn AB (A khác B khác C). Tia phân giác của góc ACB cắt (o) tại D khác C. Lấy I thuộc đoạn CD sao cho ĐI=ĐB. BỊ cắt (o) tại K khác B
a) CMR: Tam giác KAC cân
b) CMR: AI luôn đi qua điểm cố định. Từ đó xác định vị trí điểm A sao cho AI lớn nhất
c) Trên tia đối của tia AB lấy điểm M sao cho AM=AC. Tính quỷ tích M khi A di động trên cung AB của (o)
Cho BC là dây cung cố định của đường tròn tâm O bán kính R (BC<2R). A là một điểm di chuyển trên cung BC. M là một điểm di chuyển trên day AC sao cho AC = 3AM. Vẽ MNvuông góc với AB 9 N thuộc AB). Xác định vị trí của A để độ dài CN lớn nhất.
Cho đường tròn (O;R) và dây BC cố định (BC<2R) . A là điểm di chuyển trên cung lớn BC ( A khác B,C) .Gọi M là điểm chính giữa cung AC , H là hình chiếu vuông góc của M trên AB. Xác định vị trí của A trên cung lớn BC để đoạn CH có độ dài lớn nhất