cho đương thẳng AB và điểm m bất kỳ trên đoạn thẳng đó .Từ M kẻ tian Mx vuông góc với AB . Trên tia Mx lay điểm C sao cho MC=MA và lấy D sao cho MD=MB (MD>MC) đường tròn tâm O1 đi qua 3 điểm A,M,C và đường tròn tâm O2 đi qua 3 điểm B,M,P 2 đường tròn O1 và O2 cắt nhau tại điểm thứ 2 là N . c/m : 3 điểm A,N,D thẳng hàng va 3 điểm C,N,B thẳng hàng
Cho đường tròn O đường kính AB =2R . Lấy điểm C trên đường tròn O sao cho AC=R và lấy điểm M bất kỳ trên cung nhỏ BC ( M ko trùng với B và C) . Gọi H là giao điểm của AM và BC . Đường thẳng AC cắt đường thẳng BM tại D
1, Cmr 4 điểm C,D,M,H cùng thuộc 1 đường tròn
2, DH cắt AB tại K .Cmr DK vuông góc với AB
3, Cmr CKM=COM và tâm đường tròn ngoại tiếp tam giác CKM nằm trên đường trung trực của OC
Cho đường tròn O đường kính AB =2R . Lấy điểm C trên đường tròn O sao cho AC=R và lấy điểm M bất kỳ trên cung nhỏ BC ( M ko trùng với B và C) . Gọi H là giao điểm của AM và BC . Đường thẳng AC cắt đường thẳng BM tại D
1, Cmr 4 điểm C,D,M,H cùng thuộc 1 đường tròn
2, DH cắt AB tại K .Cmr DK vuông góc với AB
3, Cmr CKM=COM và tâm đường tròn ngoại tiếp tam giác CKM nằm trên đường trung trực của OC
cho đoạn thẳng AB và một điểm M bất kì nằm giữa A và B ( M không trungfvoiws trung điểm AB ) . từ M kẻ tia Mx vuông góc với Ab. trên tia Mx lấy hai điểm C và D sao cho MC=MA; MB=MD. Đường tròn tâm o1 qua 3 điểm M,C,A và đường tròn tâm o2 qua 3 điểm B,M,D cắt nhau tại điểm thứ 2 là N
Cho đường tròn (O;R) đường kính AB. Gọi H là một điểm bất kỳ trên đoạn OA (H khác hai điểm O, A). Dựng đường thẳng d vuông góc với OA tại H. Trên d lấy điểm C ở ngoài đường tròn (O). Kẻ các tiếp tuyến CM, CN với đường tròn (O); M và N là tiếp điểm, M cùng phía với A bờ CH. Các đường thẳng CM, CN cắt đường thẳng AB tại P và Q. Đường thẳng qua O và vuông góc với AB cắt MN tại K. CK cắt AB tại I. Chứng minh rằng: 1) HC là tia phân giác của góc MHN 2) I là trung điểm của đoạn thẳng PQ 3) Ba đường thẳng PN, QM và CH đồng quy.
Cho tam giác vuông ABC vuông tại A, với AC<AB, AH là đường cao kẻ từ đỉnh A. Các tiếp tuyến tại A và B với đường tròn (O) ngoại tiếp tam giác ABC cắt nhau tại M. Đoạn MO cắt cạnh AB ở E. Đoạn MC cắt đường cao AH tại F. Kéo dài CA cắt đường thẳng BM ở D. Đường thẳng BF cắt đường thẳng AM ở N.
(1. C/m OM//CD và M là trung điểm của BD)
2. C/m EF//BC
3, C/m HA là tia phân giác góc MHN
4, Trên tia BA lấy điểm K sao cho BK=3.BA. Kẻ đường thẳng Ky vuông góc với KC tại K cắt BD tại G. C/m tam giác AKG cân.
Bài 5: Cho trước đoạn thẳng AB. Gọi O là trung điểm AB. Trên đoạn AO lấy điểm M tuỳ ý, vẽ nửa đường thẳng qua M và vuông góc với AB, trên nửa đường thẳng này lấy 2 điểm C, D sao cho MA = MC và MB = MD. Đường thẳng BC cắt đường tròn qua 3 điểm A, M, C tại điểm thứ 2 là N.
a) Chứng minh rằng MN luôn đi qua 1 điểm cố định.
b) Chứng minh ba điểm A, N, D thẳng hàng.
Cho đường tròn (O) bán kính R và đường thằng (d) không đi qua O , cắt đường tròn (O lại 2 điểm E,F . Lấy điểm M bất kì trên tia đối Fe, qua M kẻ 2 tiếp tuyến MC,MD với đường tròn ( C,D) là các tiếp điểm 1. chứng minh tứ giác MCOD nội tiếp trong một đường tròn
2. gọi K là trung điểm EF . chứng minh KM là phân giác góc CKD
3. đường thẳng đi qua O và vuông góc với MO cắt các tia MC,MD theo thứ tự tại R,T . tìm vị trí của điểm M trên (d) sao cho diện tích tam giác MRT nhỏ nhất
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) và AB<AC. Các tiếp tuyến tại B và C của (O) cắt nhau tại D. Qua D kẻ đường thẳng song song với AB cắt BC,AC tại M,N.
1) Chứng minh: Tam giác ANB cân ?
2) Đường thẳng AD cắt đường tròn (O) tại I, BI cắt DM tại K. Trên đoạn BD lấy điểm P sao cho IP//DN. AP cắt BC tại Q. Gọi G là trung điểm DK. CMR: Ba điểm Q,I,G thẳng hàng ?
3) AD căt BC ở S. Gọi H là hình chiếu của B trên AD. CMR tâm đường tròn (HCS) thuộc 1 đường thẳng cố định ?