Cho đường tròn tâm O đường kính AB = 2R. Trên nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By. Trên Ax lấy C, trên By lấy D sao cho góc COD = 90 độ
Chứng minh:
a) CD = AC + BD (đã làm được)
b)CD là tiếp tuyến của đường tròn đường kính AB (M là tiếp điểm)
c) AC.BD không đổi khi C và D di động
d) AB là tiếp tuyến của đường tròn đường kính CD
e) Gọi N là giao điểm của AD và BC. Chứng Minh MN//AC
Cho đường tròn (O;R) đường kính AB. Từ A và B kẻ các tiếp tuyến Ax và By với đường tròn. Trên tia Ax lấy điểm C, qua C kẻ tiếp tuyến CD với đường tròn (Ax,By cùng thuộc một mặt phẳng bờ AB )Trên tia Ax lấy điểm C qua C kẻ trung tuyến CD vs đường tròn (D là tiếp điểm ) cắt tia By tại E gọi H là giao điểm của OC và AD
a, CM H là trung điểm của AC
b, tính số đo góc COE từ đó suy ra AC.BE=R^2
c, CM AB là trung tuyến của đường tròn đường kính CE
d, xác định vị trí của điểm C trên tia Ax để tứ giác ABEC có chu vi nhỏ nhất
Cho nửa đường tròn tâm O đường kính AB=2R. Trên cùng một nửa mặt phẳng bờ AB có chứa nửa đường tròn kẻ các tia tiếp tuyến Ax,By của đường tròn.Trên Ax,By lấy C,D sao cho CD=AC+BD. CMR: a,COD = 90* b, AB tiếp xúc với đường trong ngoại tiếp tam giác COD
Cho nửa đường tròn (O;R) đường kính AB . Hai tiếp tuyến Ax, By trên cùng một nửa mặt phẳng bờ AB . Lấy E là một điểm trên nửa đường tròn (O;R). Qua E kẻ tiếp tuyến với đường tròn (O;R),tiếp tuyến này cắt Ax ở C và cắt By ở D.Chứng minh
a Tứ giác ABCD là hình gì Tại sao
bĐường tròn ngoại tiếp tam giác COD tiếp xúc với AB tại O
c CA*DB= R^2
d Xác định vị trí của E trên nửa đường tròn (O;R) để Cd đạt giá trị nhỏ nhất
cho đoạn thẳng ab trên cùng một nửa mặt phẳng ab vẽ hai tia ã, by cùng vuông góc với ab gọi o là trung điểm ab trên tia ã by lần lượt lấy hai điểm C và D bất kỳ sao cho COD = 90 chứng minh Cd là tiếp tuyến của hai đường tròn đường kính AB tìm vị trí của C D để diện tích tứ giác ABDC nhỏ nhất và tính diện tích ấy theo AB = a
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. Điểm M nằm trên (O) sao cho tiếp tuyến tại M cắt Ax, By tại D và C. Chứng minh:
a, AD + BC = CD
b, C O D ^ = 90 0
c, AC.BD = O A 2
d, AB là tiếp tuyến của đường tròn đường kính CD
Bài này chuẩn bị tui thi vào lớp 10 á :((
Cho đường tròn (O) đường kính AB. Ax, By là 2 tia tiếp tuyến của (O) ( Ax, By cùng nửa mặt phẳng bờ là đường thẳng AB ) . Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho góc COD = 900 . CMR : CD tiếp xúc với đường tròn (O)
Cho nửa đường tròn (O) đường kính AB = 2R. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. M là điểm trên (O) sao cho tiếp tuyên tại M cắt Ax, By tại D và C. Đường thẳng AD cắt BC tại N
a, Chứng minh A, C, M, O cùng thuộc một đường tròn. Chỉ ra bán kính của đường tròn đó
b, Chứng minh OC và BM song song
c, Tìm vị trí điểm M sao cho SACDB nhỏ nhất
d, Chứng minh MN và AB vuông góc nhau
cho nửa đường tròn tâm O bán kính R,đường kính AB từ A và B vẽ 2 tiếp tuyến Ax và By,1 điểm M di động trên nửa đường tròn này vẽ tiếp tuyến tại M cắt Ax và By lần lượt tại C và D.
a)tính góc COD
b)xác định vị trí của M trên nửa đường tròn O sao cho AB+BD nhỏ nhất
giúp mình với