\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
TÌM X ĐỂ A=1/2
TÌM GTLN CỦA A
MÌNH CẢM ƠN CÁC BẠN ĐÃ TRẢ LỜI HỘ MÌNH NHA !!!
Rút gọn biểu thức
1)\(\frac{15}{3\sqrt{20}}\)
2) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{2}-\sqrt{5}}\)
3) \(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
4) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{15}}\)
5) \(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right)\sqrt{5}\)
6)\(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)
7) \(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
8)\(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\frac{1}{3}}\)
9) \(2\sqrt{3}\left(2\sqrt{6}-\sqrt{3}+1\right)\)
10) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
11) \(\sqrt{\sqrt{10}+1}.\sqrt{\sqrt{10}-1}\)
12) \(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
13) \(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{3}}+\sqrt{\frac{1}{12}}\)
14) \(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}\right)\sqrt{6}\)
15 ) \(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
16) \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
17) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
tính:
a)\(\frac{1}{1+\sqrt{5}}+\frac{1}{1-\sqrt{5}}\)
b)\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
c)\(\frac{2}{\sqrt{5}+1}+\sqrt{\frac{2}{3-\sqrt{5}}}-5\sqrt{\frac{1}{5}}\)
d)\(\left(\frac{5}{\sqrt{15}-\sqrt{10}}-\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{3}-\sqrt{5}}\right)^2\)
e)\(\frac{2}{\sqrt{3}-\sqrt{5}}+\frac{3-2\sqrt{3}}{\sqrt{3}-2}\)
giải hộ mình nha
bài 1) \(\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-\sqrt{2}}\)
bài 2) \(\frac{5+3\sqrt{a}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
bài 3) \(\left(\frac{2\sqrt{2}+3\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right):\left(\sqrt{2}-\sqrt{3}\right)-\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)
Giải chi tiết hộ mk
Tính các tổng sau:
a)\(T=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2013}+\sqrt{2017}}\)
b)\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
rút gọn các căn thức sau
B=\(\frac{\sqrt{5-\sqrt{3}}-\sqrt{5+\sqrt{3}}}{\sqrt{5-\sqrt{22}}}+\sqrt{27+10\sqrt{2}}\)C= \(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)D=\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)A= \(\frac{1}{\sqrt{3+2\sqrt{2}}}+\frac{1}{\sqrt{5+2\sqrt{6}}}+\frac{1}{\sqrt{7+2\sqrt{12}}}+....+\frac{1}{\sqrt{199+2\sqrt{9900}}}\)Rút Gọn A=\(\frac{\left(\frac{1}{4}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\frac{1}{25}}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{35}-\frac{\sqrt{2}}{5}\right)\frac{5}{7}}\)
B=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}\)
C=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
a)\(\frac{4}{\sqrt{5}-1}+\frac{3}{\sqrt{5}-2}+\frac{16}{\sqrt{5}-3}\)
b)\(\frac{2}{\sqrt{8-2\sqrt{15}}}-\frac{1}{\sqrt{5-2\sqrt{6}}}-\frac{3}{\sqrt{7+2\sqrt{10}}}\)
c)\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2}}\)
d)\(\sqrt{1+\frac{\sqrt{3}}{2}}-\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}\)
tính:
a/\(\frac{6}{4+\sqrt{4-2\sqrt{3}}}\)
b/\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
c/\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{4}+\sqrt{3}}+....+\frac{1}{\sqrt{100}-\sqrt{99}}\)
d/\(\frac{1}{\sqrt{7-2\sqrt{10}}}+\frac{1}{\sqrt{7+2\sqrt{10}}}\)