\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^9.3\)
\(A=3.\left(2+2^3+...+2^9\right)⋮3\)
A = 2 + 22 +...+ 210 ( có 10 số hạng)
A = (2+22 ) +( 23+24) + ...+ (29+210)
A = 2.(1+2) + 23.(1+2) + ...+ 29.(1+2)
A = 2.3 + 23.3 + ...+ 29.3
A = 3.(2+23 +...+29) chia hết cho 3
A = 2+22 +...+210 ( có 10 số hạng )
A = (2+22) + (23 +24 )+...+(29 +210 )
A = 2.(1+2)+23.(1+2)+...+29.(1+2)
A = 2.3 + 23.3 +...+ 29.3
A = 3. (2+23+...+29) chia hết cho 3
\(A=2+2^2+2^3+2^4+....+2^9+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)
\(=\left[2\left(1+2\right)\right]+\left[2^3\left(1+2\right)\right]+....+\left[2^9\left(1+2\right)\right]\)
\(=2\cdot3+2^3\cdot3+.....+2^9\cdot3\)
\(=3\left(2+2^3+....+2^9\right)\)
\(\Rightarrow A⋮3\)