\(A=2+2^2+2^3+...+2^{10}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^9.3\)
\(A=3\left(2+2^3+...+2^9\right)\)
Ta có : \(3⋮3\Rightarrow A=3\left(2+2^3+...+2^9\right)⋮3\)