Gọi số cần tìm là abc
Nhận thấy rằng \(2\le a+b+c\le27\)(do \(1\le a\le9\) và \(0\le b\le9\) và \(1\le c\le9\))
\(\Rightarrow2\le16+b\le27\)
\(\Rightarrow b=2\)
Ta có: \(a2c-c2a=198\)
\(\Rightarrow100a+20+c-\left(100c+20+a\right)=198\)
\(\Rightarrow99a-99c=198\)
\(\Rightarrow99\left(a-c\right)=198\) \(\Rightarrow a-c=2\)
Mà theo đề bài ta có: \(a+c=16\)
Từ đó ta suy ra: \(a=9\) và \(c=7\)
Vậy số cần tìm là 927