A là số lẻ
A=2k+1, k thuộc Z
A4+23=(2k+1)4+23=(2k+1)2.(2k+1)2+23=(4k^2+4k+1)(4k^2+4k+1)+23=(4k^2+4k).(4k^2+4k+1)+4k^2+4k+1+23
=4(k^2+k)(4k^2+4k+1)+4k^2+4k+24 chia hết cho 4
A là số lẻ
A=2k+1, k thuộc Z
A4+23=(2k+1)4+23=(2k+1)2.(2k+1)2+23=(4k^2+4k+1)(4k^2+4k+1)+23=(4k^2+4k).(4k^2+4k+1)+4k^2+4k+1+23
=4(k^2+k)(4k^2+4k+1)+4k^2+4k+24 chia hết cho 4
Mọi người giúp mình với nhé
nếu m^2 +4m +7 không chia hết cho 4 thì số tự nhiên m có thể là số lẻ hay không? Chứng minh
Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).Số ước nguyên duơng của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...Chứng minh rằng với mọi số n lẻ thì n2 + 4n + 5 không chia hết cho 8
Những số có tận cùng là 0, 2, 4, 6, 8 thì chia hết cho 2. 2. Những số có tân cùng là 0 hoặc 5 thì chia hết cho 5. 3. Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3. 4. Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9. 5. Các số có hai chữ số tận cùng lập thành số chia hết cho 4 thì chia hết cho 4. 6. Các số có hai chữ số tận cùng lập thành số chia hết cho 25 thì chia hết cho 25. 7. Các số có 3 chữ số tận cùng lập thành số chia hết cho 8 thì chia hết cho 8. 8. Các số có 3 chữ số tận cùng lập thành số chia hết cho 125 thì chia hết cho 125. 9. a chia hết cho m, b cũng chia hết cho m (m > 0) thì tổng a + b và hiệu a - b (a > b) cũng chia hết cho m.
II. Bài tập
1 324a4b đồng thời chia hết cho 2, cho 3 và cho 5
2
a)632ab đồng thời chia hết cho 2, cho 3 và cho 5
3
a) 33aab đồng thời chia hết cho 2, cho 5 và cho 9.
4
a) 4a69b đồng thời chia hết cho 2, cho 5 và cho 9
5
a) 4a69b đồng thời chia hết cho 2 và 9
6
Hãy tìm các chữ số x, y sao cho 17x8y chia hết cho 5 và 9
7 Tìm chữ số x, y để số 45x7y chia hết cho cả 2, 3, 5 và 9
cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau
Giải (copy)
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)
nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)
Vậy m,n là những số lẻ
Gọi (m,n) = d => m2- 2023n2 ⋮ d2 ; mn ⋮ d2 mà m2- 2023n2 + 2022 ⋮ mn nên 2022 ⋮ d2
Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .
Em chưa hiểu tai sao
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4
thầy Cao Lộc phân tích cho em với ạ
Câu1: Cm rằng mọi số tự nhiên n thì n2 +n+1 không chia hết cho 9
Câu 2: Cm rằng n6 - n4 - n2+1 chia hết cho 128 với n thuộc N ; n lẻ
Câu 3: Tìm số tự nhiên n sao cho n+24 và n-65 là 2 số chính phương
Câu 4: Cm B= a5 - 5a3 + 4a chia hết cho 120
Câu 5 :Tìm số tự nhiên n sao cho A=n2 + n+6 là số chính phương
chứng minh với mọi số tự nhiên n, nếu n là số lẻ thì n^2 -1 chia hết cho 8
cho a là số tự nhiên lớn hơn 5 và không chia hết cho 5
chứng minh rằng a\(^{8n}\)+3a\(^{4n}\)- 4 chia hết cho 5, với mọi số tự nhiên n.
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4