Ta có :
\(VP=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=VT\)
\(\RightarrowĐPCM\)
VT = x3 + y3 ( HĐT số 6 )
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y ) = VP
=> đpcm
\(\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(VT=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2=x^3+y^3\)
Mà \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Ta có đpcm
\(\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(VT=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2=x^3+y^3\)
Mà \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Ta có đpcm