Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)
1. Giải
Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.
Khi chia : A1; A2; A3; A4 cho 3, ta được:
A1= 3 x k1 + r1 với: 0 ≥ r1 < 3
A2=3 x k2 + r2 với: 0 ≥ r2 < 3
A3=3 x k3 + r3 với: 0 ≥ r3 <3
A4=3 x k4 + r4 với: 0 ≥ r4 <3
Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.
Ta lấy: r1 = r23k2
=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.
=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.