Xét mẫu số của A :
\(\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\) \(=\left(1+1+1+...+1\right)+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)
\(=\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1\)\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}\)\(=2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
Mẫu số gấp 2014 lần tử số nên A = \(\frac{1}{2014}\)