S4 = 12 + 22 + 32 + ... + 492 + 502
S4 = 1 + 2 ( 1 + 1 ) + 3 ( 2 + 1 ) + ... + 49 ( 48 + 1 ) + 50 ( 49 + 1 )
S4 = 1 + 1.2 + 2 + 2.3 + 3 + ... + 48 . 49 + 49 + 49 . 50 + 50
S4 = ( 1 + 2 + 3 + ... 49 + 50 ) + ( 1.2 + 2.3 + ... + 48 . 49 + 49 . 50 )
đặt A = 1 + 2 + 3 + ... 49 + 50
Ta tính được : A = 1275
đặt B = 1.2 + 2.3 + ... + 48 . 49 + 49 . 50
3B = 1.2.3 + 2.3.3 + ... + 48.49.3 + 49.50.3
3B = 1.2.3 + 2.3.(4-1) + ... + 48.49.(50-47) + 49.50.(51-48)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ... + 48.49.50 - 47.48.49 + 49.50.51-48.49.50
3B = 49.50.51
B = 49.50.51 : 3 = 41650
=> S4 = 41650 + 1275 = 42925
S5 = 13 + 23 + 33 + ... 493 + 503
S5 = 1 + 22 ( 1 + 1 ) + 32 ( 2 + 1 ) + ... 492 ( 48 + 1 ) + 502 ( 49 + 1 )
S5 = 12 + 1.22 + 22 + 2.32 + 32 + ... + 48.492 + 492 + 49.502 + 502
S5 = ( 12 + 22 + 32 + ... + 492 + 502 ) + ( 1.22 + 2.32 + ... + 48.492 + 49.502 )
đặt Y = 12 + 22 + 32 + ... + 492 + 502
Y = 42925
đặt M = 1.22 + 2.32 + ... + 48.492 + 49.502
M = 1.2.(3-1) + 2.3.(4-1) + ... + 48.49.(50-1) + 49.50.(51-48)
M = (1.2.3+2.3.4+...+48.49.50+49.50.51)-(1.2+2.3+...+48.49+49.50)
đến đây đơn giản rồi
Tính
S4=12+22+32+...+492+502S^4=1^2+2^2+3^2+...+49^2+50^2
S5=13+23+33+...+493+503S^5=1^3+2^3+3^3+...+49^3+50^3