\(\frac{11}{12}+\frac{11}{12.23}+\frac{11}{23.24}+...+\frac{11}{89.100}\)
\(=\left(1-\frac{1}{12}\right)+\left(\frac{1}{12}-\frac{1}{23}\right)+\left(\frac{1}{23}-\frac{1}{24}\right)+...+\left(\frac{1}{89}-\frac{1}{100}\right)\)
\(=1-\frac{1}{12}+\frac{1}{12}-\frac{1}{23}+...+\frac{1}{89}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
đúng thì thôi. sai thì khỏi
\(\frac{11}{12}+\frac{11}{12.23}+\frac{11}{23.34}+.....+\frac{11}{89.100}\)
\(=\frac{11}{1.12}+\frac{11}{12.23}+\frac{11}{23.34}+......+\frac{11}{89.100}\)
\(=\frac{1}{1}-\frac{1}{12}+\frac{1}{12}-\frac{1}{23}+\frac{1}{23}-\frac{1}{34}+......+\frac{1}{89}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(=1-\frac{1}{12}+\frac{1}{12}-\frac{1}{23}+\frac{1}{23}-\frac{1}{34}+...+\frac{1}{89}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)