\(\frac{\left(z-x\right)+\left(x-y\right)+\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
\(\frac{\left(z-x\right)+\left(x-y\right)+\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Tính
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
cho: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính:\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
Cho xyz=1. Tính \(E=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
Tính : \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
Mk đg cần gấp , đảm bảo tick trả đầy đủ
Cmr \(\frac{x-y}{1+xy}+\frac{y-z}{1+yz}+\frac{x-z}{1+xz}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(1+xy\right)\left(1+yz\right)\left(1+xz\right)}\)
Thu gọn đa thức
\(\frac{1}{x\left(x-y\right)\left(y-z\right)}+\frac{1}{y\left(y-z\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)
Tính:a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
b) Cho \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) . Tính \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Nhờ mí 1 bạn 1 bài nx ạ
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-x\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}.\)
Giúp giùm cái ak =( gần kt r