Xét: \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\left(\sqrt{n}-\sqrt{n-2}\right)\sqrt{n\left(n-2\right)}}\)
\(=\frac{\sqrt{n}+\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{\sqrt{n}+\sqrt{n-2}}{\sqrt{n\left(n-2\right)}}\right)\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)
Từ đó ta thay vào:
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{199}}-\frac{1}{\sqrt{121}}\right)\)
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{11}\right)\)
\(C=\frac{1}{2}\cdot\frac{10}{11}=\frac{5}{11}\)
Vậy C = 5/11