\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+.....+\frac{2}{99}-\frac{2}{100}\)
Ta tính các số âm và số dương giống nhau cộng lại có tổng bằng 0
\(\Rightarrow A=\frac{2}{2}-\frac{2}{100}\)
\(A=\frac{100}{100}-\frac{2}{100}=\frac{98}{100}=\frac{49}{50}\)
Đúng 100%
Đúng 100%
Đúng 100%
\(A=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+....+\frac{2}{99\cdot100}\)
\(A:2=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{99\cdot100}\)
A : 2 = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(A:2=\frac{1}{2}-\frac{1}{100}\)
\(A:2=\frac{49}{100}\)
A = \(\frac{49}{50}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(A=2.\frac{49}{100}\)
\(A=\frac{49}{50}\)
A = 2/2.3 + 2/3.4 + 2/4.5 +......+ 2/99.100
A = 2.( 1/2.3 + 1/3.4 + 1/4.5 +.......+ 1/99.100 )
A = 2.( 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +......+ 1/99 - 1/100 )
A = 2.( 1/2 - 1/100 )
A = 2.49/100
A = 49/50
tk mk nhé
\(\frac{2}{2.3}\)+...+\(\frac{2}{99.100}\)=2.(\(\frac{1}{2}\)-\(\frac{1}{3}\) +...+\(\frac{1}{99}\) -\(\frac{1}{100}\) )
=2.(\(\frac{1}{2}\) -\(\frac{1}{100}\) )
=2.\(\frac{49}{100}\)
=\(\frac{49}{50}\)
h cho minh nha