a)\(568-\left\{5.\text{[}143-\left(4-1\right)^2\text{]}+10\right\}:10\)
\(=568-\left\{5.\left[143-3^2\right]+10\right\}:10\)
\(=568-\left\{5.134+10\right\}\text{ }\)
\(=568-\left(670+10\right)\)
\(=568-680\)
\(=-112\)
b)\(10^2-\left[60:\left(5^6:5^4-3\times5\right)\right]\)
\(=100-\left[60-\left(6^2-15\right)\right]\)
\(=100-\left(60-\left(36-15\right)\right)\)
\(=100-60-36+15\)
\(=19\)
\(a)\)\(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)
\(=\)\(568-\left\{5.134+10\right\}\div10\)
\(=\)\(568-\left\{670+10\right\}\div10\)
\(=\)\(568-680\div10\)
\(=\)\(568-68\)
\(=\)\(500\)
\(b)\)\(10^2-\left[60\div\left(5^6\div5^4-3\times5\right)\right]\)
\(=\)\(10^2-\left[60\div\left(5^2-15\right)\right]\)
\(=\)\(10^2-\left[60\div\left(25-15\right)\right]\)
\(=\)\(10^2-\left[60\div10\right]\)
\(=\)\(100-6\)
\(=\)\(94\)