a) 27 x 6 y 9 + 27 x 4 y 6 z 4 + 9 x 2 y 3 z 8 + z 12 .
b) x 6 y 9 − 3 x 4 y 3 z 2 + 3 x 2 y 3 z 4 − y 9 z 6 .
c) − 8 125 a 6 b 6 + 12 25 a 4 b 6 c − 6 5 a 2 b 6 c 2 + b 6 c 3 .
d) 8 c 3 d 6 + 48 c d 5 + 96 cd 4 + 64 c 3 d 3 .
a) 27 x 6 y 9 + 27 x 4 y 6 z 4 + 9 x 2 y 3 z 8 + z 12 .
b) x 6 y 9 − 3 x 4 y 3 z 2 + 3 x 2 y 3 z 4 − y 9 z 6 .
c) − 8 125 a 6 b 6 + 12 25 a 4 b 6 c − 6 5 a 2 b 6 c 2 + b 6 c 3 .
d) 8 c 3 d 6 + 48 c d 5 + 96 cd 4 + 64 c 3 d 3 .
1)Phân tích thành nhân tử:
a. (((x^2)+(y^2))^2)((y^2)-(x^2))+(((y^2)+(z^2))^2)((z^2)-(y^2))+(((z^2)+(x^2))^2)((x^2)-(z^2))
b. ((x-a)^4)+4a^4
c. (x^4)-(8x^2)+4
d. (x^8)+(x^4)+1
e. x((y^2)-(z^2))+y((z^2)-(x^2))+z((x^2)-(y^2))
f. (8x^3)(y+z)-(y^3)(z+2x)-(z^3)(2x-y)
g. (12x-1)(6x-1)(4x-1)(3x-1)-5
2) Cho (a^3)+(b^3)+(c^3)=3abc và abc khác 0. Tính A=(1+a/b)(1+b/c)(1+c/a).
3) Rút gọn phân thức:
((x^3)+(y^3)+(z^3)-3xyz)/(((x-y)^2)+((y-z)^2)+((z-x)^2))
1)x^6+3x^5+4x^4+4x^3+4x^2+3x+1
2)(x+y+z)^2+(x-2)^2
3)(a-b)^3+(b-c)^3+(c-a)^3
4)10(x^7+y^7+z^7)=7(x^2+y^2+z^2)(x^5+y^5+z^5)
Pt đa thức thành nhân tử:
1)xy(x-y) + yz(y-z) + zx(z-x)
2)ab(a+b)-bc(b+c) + ac(a-c)
3)a^3(b^2-c^2) + b^3(c^2-a^2) + c^3(a^2-b^2)
4)(x+y+z)^3-x^3-y^3-z^3
5)a^3+b^3+c^3-3abc
cho x + y+z=0. cmr 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
cho a+b+c=0;a^2+b^2+c^2=0;a^3+b^3+c^3=0. tính a+b^2+c^3
1) (y-z)(12x^2-6x)+(y-z)(12x^2+6x)
2) a(b-c)+d(b-c)-c(c-b)
3) a(b-3)+(3-b)-b(3-b)
4) 5(a-b)^2+(a+b)(a-b)
5) 2a(x-y)-(y-x)
6) a^2(x-y)-(x-y)
7) 6x^2 -3+7x(6x^2-3)+4y(3-6x^2)
Phâp thức đa thức thành nhân tử
a, x^2.y^3-1/2.x^4.y^8
b, a^2.b^4+a^3.b-abc
c, 7x(y-4)^2-(y-4)^3
d, -x^2.y^2.z-6x^3.y-8x^4.z^2-x^2.y^2.z^2
e, x^3-4x^2+x
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
1, Phân tích đa thức thành nhân tử
a, 4.x^2 - 12.x.y + 5.y^2
b, (x + y + 2.z)^2 + (x + y - z)^2 - 9.z^2
c, x^4 + 2019.x^2 + 2018.x + 2019
d, a^3 - b^3 + c^3 + 3.a.b.c
e, a^3 - b^3 - c^3 - 3.a.b.c
Phân tích đa thức thành nhân tử
1. (a+b)3+(c-a)3-(b+c)3
2. xy(x+y)+yz(y+z)+xz(x+z)+2xyz
3. (x+y+z)-x3-y3-z3
4. (x+y)2+3(x+y)+2
5. 5x2+6xy+y2
6. a2(b-c)+b2(c-a)+c2(a-b)
7. a3+4a2-29a+24
8. x4+6x3+7x2-6x+1
9. x3+6x2+11x+6
10.(x+1)(x+3)(x+5)(x+7)+15
11. (x-y)3+(y-z)3+(z-x)3