Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hùng Cường Pro

tính

1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90-1/3-1/15-1/35-1/63-1/99-1/143

Trình bày cách giải

Đinh Tuấn Việt
25 tháng 11 2015 lúc 10:17

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{11.13}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=1-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{57}{130}\)

Nguyễn Ngọc Quý
25 tháng 11 2015 lúc 10:19

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}-\frac{1}{3}-\frac{1}{15}-.....-\frac{1}{143}\)

\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{143}\right)\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{11.13}\right)\)

\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)\(=\left(\frac{1}{1}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{117}{130}-\frac{78}{130}=\frac{39}{130}=\frac{3}{10}\)


Các câu hỏi tương tự
Phan Phúc Nguyên
Xem chi tiết
Trần Đình Quân
Xem chi tiết
Nguyen Thi Phuong
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
le lan huong
Xem chi tiết
vo minh hanh
Xem chi tiết
Vũ Huyền Anh
Xem chi tiết
Ngô Duy Uyên
Xem chi tiết
TKISS TION
Xem chi tiết