\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{11.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=1-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{57}{130}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}-\frac{1}{3}-\frac{1}{15}-.....-\frac{1}{143}\)
\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{143}\right)\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{11.13}\right)\)
\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)\(=\left(\frac{1}{1}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{117}{130}-\frac{78}{130}=\frac{39}{130}=\frac{3}{10}\)