\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)
1/1.2.3+1/2.3.4+...+1/99.100.101
= 1/2 ( 1/1.2-1/2.3+1/2.3-1/3.4+...+1/99.100-1/100.101)
=1/2(1/1.2-1/.100.101)=5049/20200