Ta có: \(S=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3S=1.2.3+2.3.3+3.3.4+....+99.100.3\)
\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\)
\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3S=99.100.101\)
\(\Rightarrow S=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)
S= 1.2 + 2.3 +... + 99.100
=>S= \(\frac{99.100.101}{3}\)=333300
\(S=1.2+2.3+3.4+4.5+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
S=1*2+2*3+3*4+...+99*100
3S=1*2*3+2*3*(4-1)+3*4*(5-2)+...+99*100*(101-98)
3S=1*2*3+2*3*4-1+...+99*100*101-98
3S=99*100*101
S=333300
3S= 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + .....+ 99 x 100 x 3
3S= 1 x 2 x 3 + 2 x 3 x( 4-1) + 3 x 4 x ( 5-2) + .......+ 99 x 100 x ( 101- 98)
3S= 1 x 2 x 3 + 2x 3 x4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3x 4 +......+ 99 x 100 x 101 - 98 x 99 x 100
3S= 1 x 2 x 3 - 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 4 + ......+ 99 x 100 x 101
3S= 99 x 100 x 101 = 999900
=> S = 999900 : 3 = 333300
Vậy S = 333300
\(S=1.2+2.3+3.4+4.5+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(3S=99.100.101=\frac{999900}{3}=333300\)