Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thanh Uyên

Tính tổng:S = 1^2+2^2+3^2+....+n^2

Nguyễn Tất Đạt
9 tháng 7 2017 lúc 17:28

\(S=1^2+2^2+3^2+...+n^2\)

\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)

\(=\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)\)

Theo dạng tổng quát: \(1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)

\(=\frac{2n\left(n+1\right)\left(n+2\right)}{6}-\frac{3n\left(n+1\right)}{6}\)

\(=\frac{2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)}{6}\)

\(=\frac{n\left(n+1\right).\left[2\left(n+2\right)-3\right]}{6}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Vậy \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Thúy Ngân
9 tháng 7 2017 lúc 17:21

Ta có : \(S=1^2+2^2+3^2+...+\)\(n^2\)

\(\Rightarrow S=\frac{n.\left(n+1\right)\left(n+2\right)}{2}\)

Thúy Ngân
9 tháng 7 2017 lúc 17:33

Xin lỗi mình nhớ nhầm công thức : \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)


Các câu hỏi tương tự
Thùy Giang
Xem chi tiết
Nguyễn Thùy Duyên
Xem chi tiết
hotboy
Xem chi tiết
tran xuan quynh
Xem chi tiết
tran minh triet
Xem chi tiết
Lê Thùy Linh
Xem chi tiết
Tử-Thần /
Xem chi tiết
Vũ Thị Thu Phương
Xem chi tiết
NGUYỄN THẾ DŨNG
Xem chi tiết