1 + 2 + 3 + ... + 100
= (100 + 1).100 : 2
= 101.50
= 5050
a) \(S=1+2+3+4+...+100\)
\(S=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)
\(S=5050\)
b) \(S=1+2+3+...+n\)
\(S=\frac{\left(n+1\right)\left[\left(n-1\right):1+1\right]}{2}\)
c) \(A=1+3+5+...+99\)
\(A=\frac{\left(99+1\right)\left[\left(99-1\right):2+1\right]}{2}\)
\(A=2500\)