Ta có: \(A=2^0+2+2^2+...+2^{49}+2^{50}\)
\(2A=2+2^2+2^3+...+2^{50}+2^{51}\)
\(2A-A=2^{51}-2^0\)
Hay \(A=2^{51}-1\)
Hok "tuốt" nha^^
\(A=1+2^1+2^2+...+2^{49}+2^{50}\)
\(2A=2+2^2+2^3+...+2^{50}+2^{51}\)
\(2A-A=\left(2+2^2+2^3+...+2^{50}+2^{51}\right)-\left(1+2^1+2^2+...+2^{49}+2^{50}\right)\)
\(A=2^{51}-1\)
\(A=2^0+2^1+2^2+...+2^{49}+2^{50}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{50}+2^{51}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{50}+2^{51}\right)-\left(2^0+2^1+2^2+...+2^{49}+2^{50}\right)\)
\(\Rightarrow A=2^{51}-1\)