Bài này mình vừa giải :D http://olm.vn/hoi-dap/question/185493.html -- số khác
Ta có 3 x S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
3 x S = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + 99 x 100 x (101 - 98)
3 x S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .. + 99 x 100 x 101 - 98 x 99 x 100
=> 3 x S = 99 x 100 x 101
=> A = 33 x 100 x 101 = 333300
S = 1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + ........ + 99 . 100
3S = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + 4 . 5 . 3 + ...... + 99 . 100 . 3
3S = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + 4 . 5 . ( 6 - 3 ) + ........ + 99 . 100 . ( 101 - 98 )
3S = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 + 2 . 3 . 4 + ......... + 99 . 100 . 101 - 98 . 99 . 100
3S = 99 . 100 . 101
S = \(\frac{99.100.101}{3}\)
S = \(33.100.101\)
S = 333300
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
3S=1.2.3+2.3.4+................+99.100.101-(1.2.3+........+98.99.100)
S=(99.100.101)/3
S=1.2+ 2.3+.......+99.100
Nhân cả 2 vế với 3, ta được:
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> S= (99.100.101):3
S = 333300
Vậy S=333300
Ta có:
\(3S=1.2.3+2.3.3+3.4.3+....+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+99.100.\left(101-98\right)\)
\(3S=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-.....-98.99.100+99.100.101\)
\(3S=99.100.101\)
\(S=\frac{99.100.101}{3}\)
\(S=33.100.101=333300\)
tại sao nhân 3 vậy???