=3(\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+...+\(\frac{3}{1997.2000}\))
=3(\(\frac{1}{8}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{14}\)+...+\(\frac{1}{1997}\)-\(\frac{1}{2000}\))
=3(\(\frac{1}{8}\)-\(\frac{1}{2000}\))=3.\(\frac{249}{2000}\)=\(\frac{747}{2000}\)
\(A=3.\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{1997.2000}\right)\)
\(=3.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{1997}-\frac{1}{2000}\right)\)
\(=3.\left(\frac{1}{8}-\frac{1}{2000}\right)\)
\(=3.\frac{249}{2000}\)
\(\frac{747}{2000}\)
A = 3 (3 / 8.11 + 3 / 11.14 + ..... + 3/1997.2000)
A = 3.(1/8 - 1/11 + 1/11 - 1/14 +........+1/1997 - 1/2000)
A = 3.(1/8 - 1/2000)
A = 3 .249/2000
A = 747/2000